
7 Time series analysis 

In Chapters 16, 17, 33 – 36 in Zuur, Ieno and Smith (2007), various time series 

techniques are discussed. Applying these methods in Brodgar is straightforward, 

and most choices are self-explanatory. This chapter provides extra information on 

some of the methods. 

7.1 Time series techniques  

Some of the time series techniques discussed in Zuur et al. (2007) are available 

from the exploration or multivariate menus. Others can be obtained by clicking on 

the main menu time series button (Figure 7.1). The panels show further time series 

techniques available in Brodgar from the same menu button. There are four main 

sections, namely (i) trends, (ii) sudden change, (iii) relationships and (iv) cycles.  

General time series methods are auto-and cross-correlations, time lags plotting 

ARIMAX modelling and spectral analysis. These methods make use of R, and ap-

plying them in Brodgar is similar to the linear regression menus (Chapter 5). 

These methods are available from the lower left and right panels in Figure 7.1. 
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Figure 7.1.  Time series analysis menus. 

 

7.2 Dynamic factor analysis 

Running dynamic factor analysis in Brodgar is simple; select ‘DFA based on 

Zuur et al. (2003)’ in the upper left panel in Figure 7.1, and click the ‘GO’ button. 

The upper left window in Figure 7.2 will appear. 

In the upper left window, one can select the model, the number of common 

trends, the type of error covariance matrix and the response variables. The follow-

ing DFA models are available in Brodgar: 

1. data = M common trends + noise 

2. data = M common trends + explanatory variables + noise 

3. data = N univariate trends + noise 

4. data = N univariate trends + explanatory variables + noise 

5. data = 1 common trend + noise 

6. data = 1 common trend + explanatory variables + noise 

7. 1 time series = trend + noise 

8. 1 time series = trend + explanatory variables + noise 

We now discuss each of these models. 
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Figure 7.2. Options for the DFA (Zuur et al. 2003) method. 

 

Model groups 1 & 2 

These models are discussed in detail in Zuur et al. (2007), and Zuur et al. 

(2003
ab

, 2004). The DFA code in Brodgar can deal with scalar explanatory vari-

ables, i.e. explanatory variables that have only one value at time t. However, the 

model structure is such that an explanatory variable can have a different effect on 

each of the response variables. This is probably best explained with help of a for-

mula. Suppose we have a dynamic factor model with 5 time series, 2 common 

trends, and 1 explanatory variable. The mathematical formulation is given by: 

y1t = a11 × z1t + a12 × z2t + b1 × xt + e1t 

y2t = a21 × z1t + a22 × z2t + b2 × xt + e2t 

y3t = a31 × z1t + a32 × z2t + b3 × xt + e3t 

y4t = a41 × z1t + a42 × z2t + b4 × xt + e4t 

y5t = a51 × z1t + a52 × z2t + b5 × xt + e5t 

where yit is the value of the i
th

  time series at time t, z1t and z2t  are the two common 

trends at time t, xt is the value of the explanatory variable at time t and b1, .., b5 are 
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regression coefficients. The terms e1t, .., e5t are noise components and it is as-

sumed that et = (e1t, .., e5t)' is normally distributed with expectation 0 and covari-

ance matrix R. For simplicity, we have ignored the constant level term. In matrix 

notation, the model can be written as: 

Yt = A × zt + b × xt+ et 

The elements of A are called factor loadings and indicate which common trends 

are important for which of the N response variables. The parameters b1, .., b5 are 

regression parameters. The relationship with `ordinary' factor analysis becomes 

clear by writing down the expression for the covariance matrix of Yt. For simplic-

ity, we have omitted the ‘explanatory variable’ component in the model. 

Cov(Yt)= A × Cov(zt) × A'  + R 

For identification purposes, the covariance matrix of the common trends is set 

to the identity matrix, which means that we get: 

Cov(Yt)= A × A'  + R 

This is a similar covariance model as in factor analysis, except that our factors 

(or: common trends) are required to be smoothing functions over time. In factor 

analysis, the error covariance matrix R is usually taken as a diagonal matrix. Con-

sequently, the off-diagonal elements of the covariance matrix of the response vari-

ables are modelled entirely as a function of the factor loadings. However, there is 

no reason why the user should not use a symmetric, non-diagonal matrix for R in 

dynamic factor analysis. Our experience using such a matrix is positive. The vari-

ous DFA models are presented in Table 7.1. To decide which model to use, the 

AIC criterion can be used. This criterion is a trade-off between measure of fit, and 

the number of parameters in the model.  

The advantage of using a non-diagonal matrix for R is that the number of 

common trends needed for an adequate model fit is smaller; instead of using a 

common trend for 2-way interactions, one single parameter can be used. The dis-

advantage is that the number of parameters increases drastically. 

The implementation of DFA in Brodgar can cope with missing values in the re-

sponse variables, but not with missing values in the explanatory variables. To 

avoid a fatal crash, Brodgar replaces these missing values by the average of the 

explanatory variable.  We suggest standardising the explanatory variables, as this 

makes comparison of the estimated regression parameters easier. The use of 

highly correlated explanatory variables (multi-collinearity) should also be 

avoided.  Occasionally, it happens that a common trend gives an exact fit for one 

of the response variables. This behaviour might also occur in `ordinary' factor 

analysis and is called a Heywood case. Using a non-diagonal matrix for R solves 

this problem. A possible explanation is that the time series are too noisy (or fluc-

tuate too much), and therefore DFA, which is basically a smoothing technique, 

might be inappropriate. 
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Table 7.1. Various DFA models. 

 

Model matrix R Interpretation 

Yt=Azt + et    Diagonal The N time series are modelled as a linear 

combination of M common trends. These 

common trends represent the joint signal in 

a group, or all the series. The diagonal 

elements of R indicate the amount of in-

formation that cannot be explained by the 

common trends.   

Yt=Azt + et    

 

non-diagonal 

 

As above. Additionally, 2-way interactions 

(if present) between the series are mod-

elled by the off-diagonal elements of R. 

Yt=Azt + bxt + et Diagonal The N time series are modelled as the ef-

fects of measured explanatory variables 

plus a linear combination of the common 

trends (a common pattern in the series 

which cannot be explained by the explana-

tory variables), plus a certain amount of in-

formation (time series specific) that cannot 

be explained by any of the other compo-

nents. 

Yt=Azt + bxt + et non-diagonal As above. Additionally, 2-way interactions 

are modelled via the off-diagonal elements 

of R. This might mean that less common 

trends are needed for an adequate model fit 

compared to the model above. 

 

 

 

We have used Brodgar to analyse data sets up to 20 time series (response vari-

ables) and up to 5 explanatory variables. We used 1 to 5 common trends and both 

the diagonal and non-diagonal matrices R. Results for different starting values 

were nearly identical, indicating that the numerical estimation procedure indeed 

obtained the global optimal solution. For larger data sets, this might not always be 

the case and a local optimum might be found.  

Model groups 3 to 6 

In these models a trend is estimated for each response variable. It is still possi-

ble to use a symmetric, non-diagonal matrix R, resulting in so-called seemingly 

unrelated time series models Harvey (1989). 
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Model groups 5 & 6 

In these models, one common trend is used, and all factor loadings are set to 1. 

Hence, the N time series are modelled as one common pattern plus a level parame-

ter (see below) plus noise. Basically, this is a dynamic factor model with only one 

common trend and all factor loadings set to 1. The common trends are shifted up 

and down via the constant level parameter. 

Model groups 7 & 8 

These models are for univariate series only. They model the time series as: 

1 time series = trend + noise. 

The trend is modelled as a so-called random walk. If there is more than one re-

sponse variable, a multivariate model is needed. A sensible approach is to start 

with N univariate trends (trend for each Y), where N is the number of time series, 

followed by a model containing one common trend, two common trends, three 

common trends, etc.  

The models with common trends (groups 1, 2, 5, 6) all have constant level pa-

rameters, see Zuur et al. (2003
a,b

,2004). Please note that if a model with explana-

tory variables is selected, you should have specified explanatory variables in the 

data import step. 

If a model with explanatory variables is selected, make sure that the appropriate 

variables are selected in the upper right window in Figure 7.2. 

Settings for DFA 

The lower left panel in Figure 7.2 shows the default settings for DFA. Various 

items can be changed via this window, namely: 

• Number of EM iterations. Parameters in the dynamic factor model are 

estimated with the so-called EM algorithm. Here, you can set the upper limit of 

the number of iterations the EM algorithm will carry out. For reasonably fast 

computers (800 MHz and above), it is advisable to use 1500 EM iterations. If 

computing time takes too long (either because of a slow computer or a large 

data set), it can be decreased to 500 iterations in preliminary analyses.  If the 

number of EM iterations is changed, Brodgar stores it as the new default value. 

• Stop criterion EM algorithm. If changes in the maximum likelihood function 

become smaller than this criterion, the EM algorithm will stop. We advise 

0.00001. If a different value is used, please note that Brodgar does not store the 

new value. Hence, you will need to change this each time Brodgar is started.  

• Try different starting values. Most optimisation routines rely on good starting 

values. If ‘yes’ is selected, the EM algorithm starts x-times with different start-

ing values (which are chosen at random) and carries out y-iterations. After x-

runs the starting values that resulted in the lowest AIC (or highest value of the 

likelihood function) are used as starting values in the final run. The user can 
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choose the number of runs (either 5 or 10) and the number of EM iterations in 

each run (50, 100 or 200). We recommend 5 loops with 100 iterations each. 

• Refresh rate of runtime output. The graphical user interface of Brodgar was 

written in a language called Tcl-Tk. The statistical routines were programmed 

in FORTRAN. Once the parameter estimation process is started, the 

FORTRAN code will save results to a file every  jth iteration and a signal is 

given to the graphical user interface to present these results in a window. This 

allows the user to monitor the progress of the estimation process.  The value of 

j can be changed. 

• Calculate 95% c.i. for beta. These are the confidence intervals for the parame-

ters corresponding to the explanatory variables. Depending on the number of 

response variables and explanatory variables, estimating the confidence inter-

vals might be time consuming.  

• Error covariance matrix. Here the user can choose between a diagonal matrix or 

a symmetric, non-diagonal matrix for the error matrix R. 

Output during runtime 

The estimation process is started by clicking the ‘GO’ button in Figure 7.2. 

During the estimation process a new window will appear, see Figure 7.3. It shows 

the intermediate results during runtime. In particular, it shows:  

• at which iteration the algorithm is, 

• the estimated value of the log likelihood function, 

• the change in the log likelihood function (compared to the previous iteration), 

• the AIC, BIC and CAIC values (model selection tools) 

• changes in the trends, factor loadings (Z), noise component (R), and parameters 

for the explanatory variables (beta), 

• the iteration for the starting values (if selected), 

• and most importantly, the common trends plotted versus time. 
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Figure 7.3. Output during runtime. 

 

 

 

Recall that the dynamic factor model has a constant level parameter. This is 

modelled via a dummy explanatory variable (taking the value of one). For this rea-

son, there will always be a change in beta, even if you have not selected explana-

tory variables. Changes in the parameters (the elements of Z, beta and R) are de-

fined as the sum (over all elements in a matrix) of absolute differences of 

estimated values in the current iteration and the previous iteration. 

Validation of the DFA model 

In this paragraph, model validation of DFA is discussed. A distinction has been 

made between a graphical and numerical validation. Select ‘Time Series’ from the 

main menu, and click the ‘Validation’ tab (after convergence of the algorithm). 

This gives the lower right panel in Figure 7.2. This panel is also given in Figure 

7.4. The options on the left correspond to the graphical tools, those on the right to 

numerical information. Because all information is stored in the project directory, 

one can easily access the validation information without running the DFA algo-

rithm. 
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Graphical output 

Once Brodgar has estimated the parameters in the dynamic factor model, the 

user can use various graphical tools to assess whether the chosen model is the 

most optimal one. This process follows similar lines as in linear regression. The 

following tools are available: 

• Plot all fitted curves in one graph. 

• Plot all common trends in one graph, and in separate graphs. 

• Plot the factor loadings. 

• Plot the model fit and observed values versus time in one graph for each re-

sponse variable. 

• Plot canonical correlations. 

• Plot the residuals versus time. 

• Plot histograms of the residuals. 

We discuss these tools below. The CPUE Nephrops data set was used. Time se-

ries were standardised. 

 

 

 

 

 
  

Figure 7.4. Validation options. 
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Clicking on the button labelled ‘Fitted curves’ in Figure 7.4, pops up a new 

window containing all fitted curves in one graph, see Figure 7.5. Using the legend, 

colours of the lines can be changed to blue. Comparing fitted curves with each 

other, and with the observed time series (‘Plot data’ in Data exploration), might 

provide very useful information. Clicking the ‘Common trends’ button in Figure 

7.4 shows the estimated common trends, see Figure 7.6. Again, by clicking on 

names on the legend, the color of the common trends can be changed. The second 

and third tabs in Figure 7.6 contain the individual common trends and 95% c.i.  

The estimated factor loadings for each axis are plotted as vertical lines from 0 

to their estimated values, see Figure 7.7. Furthermore, loadings of axis i are plot-

ted versus loadings of axis j for every combination of i and j. By clicking on the 

dotted line under the name of a tab, the corresponding graph will ‘jump’ out and 

can be compared with other graphs from the same window. Via the ‘Settings’ 

menu in Figure 7.2, the size of the graphs in Figure 7.6 and Figure 7.7 can be 

changed. 

 

 

 

 
 

Figure 7.5. Fitted curves for Icelandic CPUE data. 
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Figure 7.6. Estimated common trends and 95% confidence intervals. 

 

  

 

 
 

Figure 7.7. Factor loadings axis 2. 
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Results in Figure 7.7 indicate that the second axis is important for the stations 

9, 8, 10, 8 and 11. The fit of the dynamic factor model for each response variable 

can be viewed via the ‘plot model fit’ button, see Figure 7.8. 

 

  

 

 
 

Figure 7.8. Model fit for each response variable. 

 

 

 

Dynamic factor analysis is a dimension reduction technique. It is unlikely that 

every response variable is fitted well if a small number of common trends is used. 

This is the same with techniques like principal component analysis and correspon-

dence analysis. In these techniques, points close to the origin are generally not fit-

ted well.  The advantage of dynamic factor analysis is that is shows the fit, 

whereas PCA and CA do not. Dynamic factor analysis is also a smoothing tech-

nique. In contrast to ordinary smoothing techniques, dynamic factor analysis esti-

mates the amount of smoothing automatically. Occasionally, dynamic factor 

analysis produces fitted lines that are an exact fit. This means that the amount of 

smoothing is too small, which is an indication that the underlying model is inap-

propriate. In our experience, switching to a symmetric, non-diagonal matrix for 

the error covariance matrix solves this problem. Another option might be a trans-

formation. Also inspect the data for outliers. 
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The residuals are calculated as the observed values minus the fitted values. Fit-

ted values are the values obtained by the Kalman smoothing algorithm (Zuur et al. 

2003
a
). The residuals can be plotted versus time. To enhance visual inspection of 

the residuals, a smoothing line can be added.  

Figure 7.9 shows how graphical tools can be used in practise. Various windows 

can be open simultaneously.  

 

  

 
 

 

Figure 7.9. Validation tools. 

 

 

 

Canonical correlations are correlations between the original time series and the 

common trends. If a canonical correlation is large, then this indicates that the cor-

responding response variable follows the pattern of the common trend. If it is low, 

then the response variable is not related (in a linear context) to the common trend. 

These correlations provide similar information as the factor loadings. However, in 

some multivariate methods (e.g. discriminant analysis and canonical correspon-

dence analysis), there is a discussion on the reliability of weights (factor loadings).  
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Numerical output 

The numerical output can be obtained from the options on the right side in Fig-

ure 7.4. There are two important buttons, namely ‘Measures of fit’ and ‘Explana-

tory variables’. Clicking the ‘Measures of fit’ button will give the AIC, log likeli-

hood value and number of parameters, among others. For the example data, the 

following output is obtained via this button: 

Measures of fit 

LOG Likelihood =   -313.760 

AIC  =    713.520 

BIC  =    885.580 

CIAC =    928.580 

Number of parameters =  43 

The output was obtained for a dynamic factor model, with two common trends 

and a diagonal matrix for the noise covariance matrix. The AIC is the most impor-

tant quantity. Various models can be tried, and the model with the smallest AIC 

value is likely to be the best model. The BIC and CIAC are alternative measures 

of fit, but in our experience the AIC is more useful.  

The button ‘Explanatory variables’ will give the estimated values of the con-

stant level parameters and the explanatory variables (if selected) plus standard er-

rors and t-values. For the model above, the following output was obtained. 

EXPLANATORY VARIABLES  

Used model: 

 y(t) = GAMMA * alpha(t) + D x(t) + epsilon(t) 

 alpha(t) = alpha(t-1) + eta(t) 

   

x(t) contains the explanatory variables. The first col-

umn of D contains the constant level. 

     

1. Constant level parameters and standard errors (first 

column of D) 

 

 Index, estimated value, standard error and t-value 

    1      0.07      0.52      0.13 

    2      0.15      0.58      0.26 

    3      0.06      0.51      0.12 

    4      0.93      1.24      0.75 

    5      0.06      0.50      0.12 

    6      0.05      0.51      0.10 

    7      0.10      0.71      0.14 

    8      0.04      0.97      0.04 

    9      0.03      1.12      0.03 

   10      0.25      0.81      0.31 

   11      0.36      0.62      0.59 
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 2. Estimated regression parameters 

 No explanatory variables were used. 

The constant level parameter is modelled with help of a dummy variable, which 

takes the value of one for each response variable (Zuur et al. 2003
a
). The second 

column (containing the values 0.07, 0.15, etc.) contains the estimated values for 

the constant level parameters. The third column contains the standard errors and 

the fourth column the t-values. Although these t-values should be interpreted with 

care, t-values larger than 3 (in absolute sense) indicate a strong relationship be-

tween the explanatory variable and the response variable. In this case, all esti-

mated constant level parameters are non-significant different from zero. This did 

not come as a surprise because the time series were standardised prior to the 

analysis. If besides the dummy variable, explanatory variables are used, results are 

presented in the same way. 

The output of Brodgar can also be found in ascii files, under the output direc-

tory of Brodgar. Recall that this is the directory which has the same name (and di-

rectory path) as your project name except for the *.brd extension. The relevant 

files are: results.txt, Res_ci.txt, Res_covm.txt, Res_expl.txt, Res_facl.txt and 

Res_mf.txt. The text in these files explains what is printed. 

Other numerical information (e.g. starting values of the trends, estimated error 

covariance matrix, convergence information) is available and follows the notation 

in Zuur et al. (2003a).  

Copy numerical output to the clipboard 

Numerical output of most techniques in Brodgar can be copied directly to the 

windows clipboard. From there, you can paste it into Microsoft Excel. Just click 

one of the ‘Copy to clipboard’ buttons in Brodgar, and press Control-V in Excel. 

The interpretation of the output is discussed below. For DFA, the output is as fol-

lows.  

 Factor loadings 

An ascii file containing the loading can be found in: 

\YourProjectName\facload.txt. The first column contains the factor loadings of the 

first axis, the second column the loadings of the second axis, etc.  

Trends 

An ascii file containing the trends can be found in: \YourProjectName\at.txt. In-

terpretation of the columns in this file are: 

• First column:  time index.  

• Second column: the first common trend.  

• Third column: the lower 95% confidence band of the first common trend. 

• Fourth column: the upper 95% confidence band of the first common trend.  



142      7 Time series analysis 

• Fifth column: the second common trend (if selected).  

• Sixth column:  the lower 95% confidence band of the second common trend.  

• Seventh column: the upper 95% confidence band of the first common trend.  

• Eight column: third common trend (if selected)  

• etc.  

7.3 Repeated Loess smoothing in Brodgar. 

Repeated Loess smoothing is available from the ‘Trend’ menu under the main 

menu button ‘Time Series’. First, the user can (de-)select response variables. 

Brodgar will apply repeated Loess smoothing on each selected time series. 

 

 

 

 
  

 

Figure 7.10. Settings for repeated Loess smoothing in Brodgar. 

 

 

 

The following options are available (Figure 7.10). 

 

Number of Loess curves. Either 1 or 2. 
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Span width of the first Loess curve. This should be a value between 0 and 1. 

 

 

Span width of the second Loess curve (if selected in the first step). This should 

also be a value between 0 and 1, and smaller than the span width of the first Loess 

curve. 

 

If 2 smoothing curves are selected, the number of iterations. This is the iteration 

of repeated Loess smoothing described above. In general, 5 iterations will suffice.  

 

Predict missing values. This option, only available if one smoothing curve is 

estimated, will predict (using Loess) missing values in the original time series. 

Note that it will not predict missing values immediately at the beginning or end of 

the time series. 

 

Values along the x-axis. This can be automatic (resulting in values of 1, 2, 3, 

etc.), or the column labels can be used. In the latter case, make sure that the col-

umn labels are numeric. 

 

Thickness of line for the mean. This line is only plotted if the appropriate box is 

ticked in the graphical output menu, see above. The line width can be changed 

from 3 (default) to other values. 

 

Graph type. Allows the user to select saving graphs as a  JPG, BMP or PNG. 

 

Name of graph. Brodgar will save the graph as: YourName.JPG in the project 

directory (assuming a JPG file was selected). 

 

Title. This title will appear at the top of the figure.  

 

Title x-axis. Allows the user to enter a label for the x-axis. 

 

Title y-axis. Allows the user to enter a title for the y-axis. 

 

 

The graphical output consists of: 

• All smoothing curves in one graph, with or without a mean value, per 

component. 

• The first, second and residuals on one page. The style options determine 

whether graphs are plotted next to each other, under each other, or in a matrix 

format. It is also possible to access the estimated smoothing curves, click on the  

‘Numerical output’ button. It will give the estimated smoothing curves and data 

with missing values replaced by estimators (if requested). This output can be 
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copied and pasted manually to Excel if you wish to create graphs with a differ-

ent plotting style. 

7.4 Seasonal decomposition by Loess smoothing 

This technique makes use of the R function 'stl', which decomposes a time se-

ries into a trend, seasonal component and residual information using Loess 

smoothing. Examples and details are given in Zuur et al. (2007). A related method 

is the month or cycle plot, and is discussed next. 

7.4.1 Month plots (cycle plots) 

This technique plots data of the same month in one graph. It will create a Janu-

ary time series, a February time series, etc. These 12 time series (of the original 

data) are plotted in one graph in a coplot style. Besides a month plot of the origi-

nal data, Brodgar will also add a month plot for the components obtained by the 

seasonal decomposition by Loess smoothing, see Cleveland (1993) for details. An 

illustration of seasonal decomposition by Loess smoothing and month plots is pre-

sented in Figure 7.11 to Figure 7.14. Figure 7.11 shows monthly CO2 data meas-

ured on Hawaii since the late 1950s. The decomposition into a trend and seasonal 

component using Loess smoothing is presented in Figure 7.12 and Figure 7.13. 

We used a Loess window of 21 (span in lags). Figure 7.14 shows the month (or 

cycle) plot. Results indicate that the monthly series have a maximum in May and a 

minimum in October. The maximum increase in CO2 was observed in April, and 

the largest decrease in September. 

The menu options for the seasonal decomposition using Loess smoothing are 

given in Figure 7.15. The options for the month plot are identical. 
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Figure 7.11. Time series plot of monthly CO2 data at Hawaii. 
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Figure 7.12. Long term trend obtained by seasonal Loess decomposition. of 

monthly CO2 data at Hawaii. 
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Figure 7.13. Seasonal component obtained by seasonal Loess decomposition. of 

monthly CO2 data at Hawaii. 
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Figure 7.14. Month plot of seasonal component obtained by seasonal Loess de-

composition. of monthly CO2 data at Hawaii. 
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Figure 7.15. Options in Brodgar for the seasonal decomposition using Loess. 

 

 

 

In the left panel, a response variable can be selected. The right panel shows the 

settings.  

 

Time series frequency. This is the frequency of the time series. For monthly 

time series, this will be 12, and for quarterly time series it is 4. 

 

Loess window trend and Loess window seasonal. The values determine the 

amount of smoothing that is used in the sub-series. The default value for the 

months is ‘periodic’ and means that mean values per month are taken. Alterna-
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tively, the span, in terms of the lag, can be chosen. In Figure 7.13, we used a span 

of 21 for the seasonal component, and the default value for the trend. 

 

Trend degree and seasonal degree. This value determines whether the Loess al-

gorithm should use a linear regression model or polynomial model to obtain the 

smoothing values. See also the ‘stl’ help files of R. Setting it to 0 should result in 

smoother curves.   

 

Graphical output. This can be 1 graph per component (with or without a mean 

curve), and N individual graphs (resulting in Figure 7.12 to Figure 7.14). 

 

Thickness of line for the mean. The higher this value is, the thicker the line for 

the mean values. 

 

 

 


