
5 Univariate techniques 

In Zuur et al. (2007), various univariate statistical methods were discussed, 
namely linear regression, generalised linear modelling (GLM), additive modelling, 
generalised additive modelling (GAM), regression and classification trees, mixed 
effects modelling, generalised least squares (GL) and additive mixed effects mod-
elling. More examples on (additive) mixed effects modelling (and extensions) can 
be found in Zuur et al. (2009). Their Appendix A contains a detailed example of 
linear regression. 

In this chapter, we show how to apply these techniques in Brodgar. In Section 
5.1, we show how to apply a linear regression analysis in Brodgar, and Section 5.2 
tells you have to reproduce some of the analyses presented in Zuur et al. 92007; 
2009). Applying any of the other univariate techniques in Brodgar follows the 
same clicking process, and we therefore strongly advise that you read these two 
sections, before reading the remaining text.  

In Sections 5.3 and 5.4, we show how to apply GLM in Brodgar, and GAM is 
discussed in Section 5.5 and 5.6. Running regression and classification techniques 
in Brodgar are explained in Section 5.7. Mixed effects models are discussed in 
Section 5.8, and GLS (for detailing with heterogeneity) in Sections 5.9 add 5.10. 
Finally, adding temporal or spatial correlation structures to additive models and 
GLS is explained in Section 5.11. 

All methods discussed in this chapter make use of R. 
 

5.1 Linear regression in Brodgar  

Linear regression is explained in Sections 5.1 and 5.2 in Zuur et al. (2007), and 
in Appendix A of Zuur et al. (2009). We start showing how to do linear regression 
in Brodgar, discuss some of the options, present output for a particular data set and 
mention further options. 

5.1.1 A simple linear regression analysis 

In this section, we will use the Argentinean zoobenthic data; see Chapters 4 and 
28 in Zuur et al. (2007) for a biological explanation. The data can be found in the 
Excel file www.brodgar.com/Argentina.xls. The four species L. acuta,  H. similis, 
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U. uruguayensis and N. succinea are the response variables and the other variables 
are explanatory variables. Once the data are imported, click on the “Univariate” 
main menu button (Figure 3.1). The window in Figure 5.1 appears.  

The Argentinean zoobenthic data set consists of 4 species measured at 30 sites 
during Autumn and Spring of 1997. And there are 4 sediment variables. Results in 
Chapter 4 in Zuur et al. (2007) showed that there is collinearity between the sedi-
ment variables. Therefore, we only use medium sand and mud as continuous ex-
planatory variables, and time (season) and transect as nominal variables. Clicking 
the “Go” button in Figure 5.1 gives Figure 5.2; the window for linear regression. 
In the first tab labelled “Variables” one can select the response and explanatory 
variables. It is also possible to use weights. Each of these points is discussed next. 

 
 

 
 

Figure 5.1. Univariate analysis menu. Clicking the “Go” button gives Figure 5.2. 
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Figure 5.2. Selection of a response variable (top row) and explanatory variables in 
linear regression. The “Continuous” box is for continuous explanatory variables 
and the “Nominal” box for nominal (categorical) explanatory variables. Choosing 
the variables the wrong way around, may cause error messages. But even if no er-
ror message is generated, ensure you select the right variables in the appropriate 
box! 

5.1.2 Select response variable 

Here, one has to choose a response variable. In this case, the options are: L. 

acuta, H. similes, U. uruguayensis and N. succine. Brodgar also allows the user to 
select a diversity index as response variable. These indices can be selected in the 
“Select response variable” box (they are enumerated above the response vari-
ables). If one of these diversity indices is selected, Brodgar will base the calcula-
tion of the diversity index on all response variables (as selected in the data import 
process). We decided to use the Shannon-Weaver diversity function (with base 
10). 

5.1.3 Select explanatory variables and nominal variables 

In this step, one has to select explanatory variables. All available explanatory 
variables (as selected in the data import process) are enumerated. If no explana-
tory variables are selected, a linear regression model with only an intercept is fit-
ted. We selected medium sand and mud as continuous explanatory variables, and 
season and transect as nominal explanatory variables. 

Our selections are shown in Figure 5.2. Clicking the “Go” button in Figure 5.2 
applies the linear regression model. Before presenting the output, we discuss a few 
things.   
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5.1.4 Use weights 

The following information was taken from the R help file (start R and type: 
?lm): 

weights: an optional vector of weights to be used in 

the fitting process. If specified, weighted least 

squares is used with weights 'weights' (that is, mini-

mizing 'sum(w*e^2)'); otherwise ordinary least squares 

is used. 

If weights are to be used in Brodgar, the user should first select the weighting 
variable as an explanatory variable in the data import process, and then select it in 
the box for “Use weights” in Figure 5.2. Please make sure that the variable defin-
ing the weights does not contain missing values, negative values or zeros! 

5.1.5 Graphs settings and general settings 

In the tab “Graph settings” (Figure 5.3), one can specify the title, x-label, y-
label, graph type, the name of the graph, and which validation graphs should be 
plotted. Brodgar and R will save the graphs in your project directory under the de-
fault name: graph1.jpg, but this can easily be changed. Graphs can also be ex-
ported to WMF or EPS format, which can be imported into Word or WordPerfect 
(see Chapter 4 of this manual for further details).  

Possible validation graphs are the default graph, a plot of the residuals versus 
the fitted values, a QQ-plot of the standardised residuals, square root transformed 
standardised residuals versus fitted values (scale plot), Cook’s distances, hat (or 
leverage) values for each observation, the change in the fitted values if the ith ob-
servation is omitted, a histogram of the residuals, partial plots (these are discussed 
later in this chapter), and the change in regression parameters if the ith observation 
is  omitted. Studentised and standardised residuals can also be plotted versus the 
fitted values. If only one explanatory variable is selected, Brodgar will automati-
cally plot the fitted values and observed values in one graph. 

In the “Settings” panel (lower window in Figure 5.3), one can choose to save 
the residuals or fitted values (we discuss later how to access them). Important 
model validation graphs are residuals versus each explanatory variable, and it is 
optional to add a smoother to these plots to aid visual interpretation of the graphs. 

Automatic stepwise model selection can be selected by changing the “no” for 
“Forward/backward selection”. Possible options are “backwards”, “forward”, 
“backwards and forwards selection”. All these options apply stepwise linear re-
gression using the AIC. 

It is also possible to drop one explanatory variable in turn, and apply an F-test. 
This is executing the function drop1 from R. Note that this is not doing sequen-
tial testing! It is a useful tool to obtain one p-value for a nominal variable with 
more than two levels. To select this option, change the “no” for “For-
ward/backward selection” into “drop1”. 



5.1 Linear regression in Brodgar      33 

 
 

 
  

Figure 5.3. More options for linear regression; graph settings, and (general) set-
tings. Newer versions of Brodgar may have a slightly different arrangement of the 
options. 

 

5.1.6 Results linear regression 

Clicking the “Go” button in Figure 5.2 results in the window in Figure 5.4. This 
graph is the default output of the linear regression function in R and Brodgar. The 
upper left graph in Figure 5.4 shows a plot of the fitted values versus residuals. 
Look for any pattern, and specifically for an increase (or decrease) in spread of re-
siduals for increasing values of the fitted values, as this would indicate violation of 
the homogeneity assumption (in which case a transformation or application of 
GLM should be considered). The upper right panel shows the QQ-plot of the stan-
dardised residuals. If all points are approximately on a straight line, then normality 
of the residuals can be assumed. The lower right panel contains a scatterplot of 
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leverage versus residuals, with contour lines for the Cook’s distance values. It is 
also possible to obtain a graph with only the Cook distances; juts press a couple of 
times on the “Next graph” button. Cook values larger than 1 indicate influential 
observations. The lower left panel in Figure 5.4 contains a scatterplot of square 
root transformed standardised residuals versus the fitted values; see Chapter 5 in 
Zuur et al. (2007) for an explanation. 

 
 

 

 
 

Figure 5.4. Graphical output from a linear regression analysis.  
 
 

Numerical output 

Numerical information can be obtained from the menu in Figure 5.4; just click 
the “Numerical output” button. A text editor will open with the following informa-
tion: 
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############################################ 

#### LINEAR REGRESSION NUMERICAL OUTPUT #### 

############################################ 

Model is given by f1:  

Y1 ~ 1 + MedSand + Mud + as.factor(Season) + as.factor(Transect)  

Call: 

lm(formula = f1, data = dataz, weights = XW, na.action = na.omit) 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.299305 -0.091526  0.002258  0.072666  0.257453  

Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)          -0.124396   0.104771  -1.187   0.2403     

MedSand               0.001274   0.014171   0.090   0.9287     

Mud                   0.007269   0.003551   2.047   0.0455 *   

as.factor(Season)2    0.049265   0.030159   1.633   0.1082     

as.factor(Transect)2  0.191408   0.041030   4.665 2.07e-05 *** 

as.factor(Transect)3  0.139169   0.040354   3.449   0.0011 **  

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 0.1168 on 54 degrees of freedom 

Multiple R-Squared: 0.3589, Adjusted R-squared: 0.2996  

F-statistic: 6.047 on 5 and 54 DF,  p-value: 0.0001632  

Analysis of Variance Table 

Response: Y1 

                    Df  Sum Sq Mean Sq F value   Pr(>F)     

MedSand              1 0.00815 0.00815  0.5972   0.4430     

Mud                  1 0.01955 0.01955  1.4330   0.2365     

as.factor(Season)    1 0.03641 0.03641  2.6683   0.1082     

as.factor(Transect)  2 0.34841 0.17420 12.7680 2.88e-05 *** 

Residuals           54 0.73677 0.01364                      

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

No weights were used 

 The linear regression model we are fitting here is of the form: 

Hi =  α + β1 × MedSandi + β1Mudi + factor(Seasoni) + factor(Transecti) + εi 

where i = 1, . .,60, Hi the Shannon-Weaver index at observation i and εi are the re-
siduals. Estimated values, standard errors, t-values and p-values are given above 
and the reader is referred to Zuur et al. (2007) for a statistical explanation. The 
only point that perhaps needs some explanation is the way Brodgar and R deal 
with nominal variables. The function “factor(Season)” makes sure that R knows 
that Season is a nominal variable. The first level of Season (Autumn) is set to 
zero, and the second level (Spring) is denoted by as.factor(Season)2. Its estimated 
value is 0.049265. The same is done for transect; the first level (transect A) is set 
to 0, as.factor(Transect)2 represents transect B, and as.factor(Transect)3 are the 
observations from transect C. The first level is set to 0 to avoid collinearity (if an 
observation is not from transect B or C, it must be from transect A). As a result, 
the intercept represents the intercept itself, but also level 1 of transect (transect A) 
and level 1 of season (Autumn). 
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 The interpretation of the nominal variables is as follows. If a sample is from 
transect B, its fitted value will be 0.191408 higher compared to a sample from 
transect A. A sample from transect C has a fitted value that is 0.139169 higher 
than a sample from transect A. Similar statements can be made for samples from 
transect B and C in Spring. 

Results indicate that mud is weakly significant at the 5% level, and the two 
transect levels are significantly different from the baseline level. Season and me-
dium sand are not significantly related to the index function. The measure of fit R2 
is relative small; the model explains around 35% of the variation in the data.  

The second part of the numerical output contains the ANOVA table, and it 
shows the F-value (and p-value) for adding an extra explanatory variable. Hence, 
adding mud to a linear regression model that already contains medium sand does 
not significantly improve the model. But adding transect to a model that already 
contains medium sand, mud and season does result in a significant model im-
provement. The problem with this table is that it depends on the order of how the 
explanatory variables were imported. It may be better to drop only one explana-
tory variable from the full model, and apply an F-test (see the next paragraph). 

As explained in Appendix A of Zuur et al. (2009), there are multiple options for 
model selection. The first option we illustrate is hypothesis testing using the drop1 
function, and the second option is the AIC. 

Drop 1 

Hypotheses testing procedures can be used to drop non-significant explanatory 
variables. The drop1 option applies the model with all selected explanatory vari-
ables, and in turn, drops one explanatory variable and applies an F-test. The re-
sults are also presented in an ANOVA table, but it is crucial to realise that these 
test results do not depend on the order of the variables. 

To run this test in Brodgar, close the window with the numerical output, and 
also close the window with graphical output (Figure 5.4). Go to the window with 
“Settings” in Figure 5.3, and for “Forward/backward selection” change the “no” to 
“drop1”; ensure that on the next line the F-test is selected (for GLMs with no dis-
persion parameter this should be the Chi-square statistic). Click on the “Go” but-
ton, and again go to the numerical output. At the end of the window with numeri-
cal output, you will find: 
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############################################ 

####    OUTPUT OF SELECTION PROCEDURE   #### 

The selection procedure cannot cope with missing values. 

If you have missing values, re-apply linear regression but 

remove rows with missing values. 

Single term deletions 

Model: 

Y1 ~ 1 + MedSand + Mud + as.factor(Season) + as.factor(Transect) 

                    Df Sum of Sq      RSS      AIC F value    Pr(F)     

<none>                              0.737 -251.990                      

MedSand              1 0.0001104    0.737 -253.981  0.0081  0.92867     

Mud                  1     0.057    0.794 -249.505  4.1903  0.04554 

as.factor(Season)    1     0.036    0.773 -251.096  2.6683  0.10819     

as.factor(Transect)  2     0.348    1.085 -232.756 12.7680 2.88e-05 

The advantage of this test is that it gives one p-value for the categorical vari-
able Transect. Note that the p-values for MedSand and Mud are identical to the 
ones obtained by the t-statistic; this is not necessarily the case for GLMs. 

Using the AIC 

We now show how to apply and interpret the second option; backwards selec-
tion using the AIC. Close the window with the numerical output, and also close 
the window with graphical output (Figure 5.4). Go to the window with “Settings” 
in Figure 5.3, and for “Forward/backward selection” change the “no” to “back-
wards”. The end if the numerical output file now reads: 

############################################ 

####    OUTPUT OF SELECTION PROCEDURE   #### 

The selection procedure cannot cope with missing values. 

If you have missing values, re-apply linear regression but 

remove rows with missing values. 

Start:  AIC=-251.99 

Y1 ~ 1 + MedSand + Mud + as.factor(Season) + as.factor(Transect) 

                      Df Sum of Sq      RSS      AIC 

- MedSand              1 0.0001104    0.737 -253.981 

<none>                                0.737 -251.990 

- as.factor(Season)    1     0.036    0.773 -251.096 

- Mud                  1     0.057    0.794 -249.505 

- as.factor(Transect)  2     0.348    1.085 -232.756 

Step:  AIC=-253.98 

Y1 ~ Mud + as.factor(Season) + as.factor(Transect) 

                      Df Sum of Sq      RSS      AIC 

<none>                                0.737 -253.981 

- as.factor(Season)    1     0.036    0.773 -253.087 

- Mud                  1     0.066    0.803 -250.803 

- as.factor(Transect)  2     0.366    1.103 -233.782 
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Call: 

lm(formula = Y1 ~ Mud + as.factor(Season) + as.factor(Transect),     

data = datazz, weights = XW, na.action = na.omit) 

Coefficients: 

         (Intercept)                   Mud    as.factor(Season)2  

as.factor(Transect)2  as.factor(Transect)3   

-0.119708              0.007137              0.049265              

0.192788              0.138020   

 The first step of the backward selection routine indicates that medium sand 
should be dropped first from the model; it has the lowest AIC. The optimal model, 
as selected by the AIC, contains mud, season and transect. You now need to close 
the windows with numerical output and graphical output, remove medium sand 
from the list of selected explanatory variables in Figure 5.2, and refit the model. 
The numerical output of this model shows that it is optional to remove season as it 
is not significant at the 5% level (the AIC tends to be conservative). 

You should now apply a graphical model validation; inspect the residuals for 
homogeneity, normality and independence. All necessary graphs can be obtained 
by clicking on the “Next graph” button in Figure 5.4. The important graphs are re-
siduals versus fitted values (upper left panel in the first graph, or the second 
graph), independence (last graphs), and normality (upper right panel in the first 
graph or the histogram in graph 8).  

 5.1.6 Interactions 

It is possible to specify interactions between continuous variables, between 
continuous and nominal variables, and between nominal variables. To define in-
teractions between for example mud and Transect, click on the “Interaction” tab in 
Figure 5.2; it gives Figure 5.5. Select Mud from the left panel (it is a continuous 
explanatory variable), click the ‘:’ button, and select Transect from the right panel 
(it is nominal). The interaction term will be of the form:  

Mud:as.factor(Transect) 

which is the programming code for interactions in R. To add a second interaction 
term, click the ‘+’ button, add select more variables. For example: 

Mud:as.factor(Transect)+Mud:as.factor(Season) 

To remove all interactions, press ‘Clear’. We did not select any interactions for the 
Argentinean data set. Appendix A in Zuur et al (2009) contains a series of options 
how to deal with interactions. If you select interactions, make sure that the main 
terms are selected as explanatory variables in the “Variables” tab.  
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Figure 5.5. Selecting interactions in Brodgar. The text in the panel reads: 
Mud:as.factor(Transect)+Mud:as.factor(Season). Do not make 
any mistake with the : or the +. Note that you must select any terms in the interac-
tion also as a main term in Figure 5.2! 

 

5.1.7 Specialised corner 

Brodgar versions 2.3.6 and higher have a new tabsheet called the “Specialised 
corner”. It allows the user to fit a full model, and a nested model. An F-test is used 
to compare the models. It is discussed later in this chapter. 

5.1.8 Visualise the model 

Communicating the results of a linear regression model to a non-scientific au-
dience is challenging (it is even challenging if the audience does have a scientific 
background!). One graph tells more than all the tables coming out of a linear re-
gression analysis, and therefore Brodgar version 2.6.1 and higher have a new tab-
sheet called “Visualise the model”. This option is only available for linear regres-
sion and generalised linear modelling. It allows the user to fit a model with two or 
more explanatory variables, and create a graph showing what the model is doing. 
An example is given in Figure A.3 in Zuur et al. (2009). The model that was fitted 
is of the form: 

ABUNDANCE = α + β × LOGAREA + factor(GRAZE) + ε 

If you are familiar with this type of models, you will know that this model con-
tains five parallel lines; one for each grazing level.  In the next section, we show 
how to make such a graph. 
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5.2 Regression examples from Zuur et al. (2007; 2009) 

In this section, we show how to carry out some of the linear regression models 
presented in Zuur et al. (2007; 2009). 

5.2.1 Section 20.4 in Zuur et al. (2007). 

In Section 20.4 of Zuur et al. (2007), a linear regression model is applied on the 
decapod data. These data were also discussed in Chapter 4 of this manual. The re-
sponse variable is the richness of the decapod families, and the explanatory vari-
ables in the linear regression model are T1m, square root transformed chlorophyll-
a and location (nominal). Import the data again, apply the square root transforma-
tion on chlorophyll-a via the “Import” – “Change data” – “Variables and Trans-
formation” buttons. Do not forget to click the “Save Changes and Finish Data Im-
port Process” button!  

Go to the linear regression menu, and ensure that you have the same selection 
of variables as in Figure 5.6. Clicking the “Go” button gives the same numerical 
output as on page 379 in Zuur et al. (2007). If you obtain different results, check 
that in the import process, only the 12 decapod families are selected as response 
variables, and that chlorophyll is square root transformed.  

Besides the numerical output on page 379, you should also get all the graphs in 
Figure 20.4. 

 
 

 
 

Figure 5.6. Selection of variables to reproduce the linear regression results on page 
379 in Zuur et al (2007) for the decapod data. Note that richness is selected as re-
sponse variable.  
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5.2.2 Section 26.4 in Zuur et al. (2007) 

The vegetation data can be found in the file www.brodgar.com/Vegetation.xls. 
Import the data (note that the first column contains data, not labels!) and select all 
columns up to ROCK as response variable, and all variables from ROCK onwards 
are explanatory variables. Go to the linear regression menu and select the vari-
ables as in Figure 5.7. The estimated values are given on page 473 in Zuur et al. 
(2007). The graphical model validation windows are in Figure 26.6 and 26.7. To 
produce Figure 26.9, select “standardised residuals” for the option “Store residuals 
in Figure 5.3. Run the linear regression model in Brodgar; it gives Figure 5.8. 
Note the menu option “Tools”. There are two options under this menu; “View re-
siduals and “Export residuals to Excel”. The first option opens a text file with the 
(standardised) residuals, the second option copies the residuals to the clipboard, 
and you can then paste them into, for example, Excel. Provided the selected vari-
ables in the linear regression model do not contain any missing values, you can 
paste the residuals next to the column SAMPLEYR in Excel, and make a scatter-
plot.  

You can also paste the residuals in Brodgar’s own spreadsheet via “Import” – 
“Change Data”. If there are missing values in the selected variables in the linear 
regression model, the residuals will be of shorter length than the original data. Ei-
ther add NAs to the column with residuals (which is a pain) or remove the missing 
values from the data (either in Excel or via “Import” – “Change Data” and remove 
rows) before doing the linear regression analysis in Brodgar. 

 
 
 

 
 

Figure 5.7. Our selection of variables for the vegetation data. Estimated parame-
ters are given on page 473 in Zuur et al. (2007). Note that there are small numeri-
cal differences. 
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Figure 5.8. Output from the linear regression model applied on the vegetation 
data. Note the menu option “Stored Information” an the top of the window. You 
can select “View residuals and “Export residuals to Excel” from this option. 

 

5.2.3 Section 7.5 in Zuur et al. (2009) 

The data used in Section 7.5 in Zuur et al. (2009) are a subset of the data ana-
lysed in Cruikshanks et al. (2007). The original research sampled 257 rivers in Ire-
land during 2002 and 2003.  

 One of the aims was to find a different tool for identifying acid-sensitive wa-
ters, which currently uses measures of pH. The problem with pH is that it is ex-
tremely variable within a catchment, and depends on both flow conditions and un-
derlying geology. As an alternative measure, the Sodium Dominance Index (SDI) 
is proposed as an indicator of the acid sensitivity of rivers. SDI is defined as the 
contribution of sodium (Na+) to the sum of the major cations. Of the 257 sites, 
192 were non-forested and 65 were forested.  

In section 7.5, pH is modelled as a function of SDI, whether a site is forested or 
not, and altitude. 
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The data are in the file www.brodgar.com/SDI.xls; select pH as response vari-
able, and SDI, forested and altitude as explanatory variables. We will not use the 
spatial locations. Apply a logarithmic transformation with base 10 on altitude. 

In the linear regression menu, ensure that pH is the response variable and select 
SDI, altitude and forested (nominal) as explanatory variables, see Figure 5.9. Zuur 
et al. (2009) also included a 3-way interaction, and therefore all 2-way interactions 
must be included, see Figure 5.10. The text in the window reads as: 

SDI:as.factor(Forested)+Altitude:as.factor(Forested)+ 

SDI:Altitude+ 

SDI:Altitude:as.factor(Forested)  

The first three components are the 2-way interactions and the last line contains 
the 3-way interaction term. An alternative would have been: 

SDI*Altitude*as.factor(Forested)  

This notation includes all lower interactions automatically. Note that you must 
still select the main terms in Figure 5.9. 

The numerical output (not presented here) shows that the 3-way interaction is 
not significant. Hence, you can proceed to a backward selection using the AIC, or 
the drop1 function. It is also interesting to extract the residuals and plot them 
against their spatial locations (in for example Excel). 

 
 

 
 
Figure 5.9. Selection of main terms for the Irish pH data. 
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Figure 5.10. Selection of interaction terms for the Irish pH data. The text in the 
window reads (spaces are optional): SDI : as.factor(Forested) + 
Altitude : as.factor(Forested) + SDI : Altitude + 

SDI : Altitude : as.factor(Forested). 
 

5.2.4 Figure A.3 in Zuur et al. (2009) 

In this subsection, we illustrate how to visualise the results of a linear regres-
sion model. For a GLM, the clicking process is identical.  

Open the the Loyn bird data (Loyn, 1987) in from: 

http://www.highstat.com/ZuurDataMixedModelling.zip 

It is the file Loyn.txt. Import the data (e.g. via Excel), set ABUND as response 
variable and all other variables as explanatory variables, log-10 transform AREA, 
DIST and LDIST, and apply a linear regression model using ABUND as response 
variable, and AREA as continuous explanatory variable and GRAZE as a nominal 
explanatory variable. It is actually a good exercise to follow all the steps in Ap-
pendix A.1 – A.3 in Zuur et al. (2009), but we only show how to visualise the final 
model. Appendix A.3.1 in Zuur et al. (2009) gives the following numerical output 
for the optimal model: 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|)     

(Intercept)        15.7164     2.7674   5.679 6.87e-07  

AREA                7.2472     1.2551   5.774 4.90e-07  

as.factor(GRAZE)2   0.3826     2.9123   0.131 0.895992     

as.factor(GRAZE)3  -0.1893     2.5498  -0.074 0.941119     

as.factor(GRAZE)4  -1.5916     2.9762  -0.535 0.595182     

as.factor(GRAZE)5 -11.8938     2.9311  -4.058 0.000174  
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Residual standard error: 5.883 on 50 degrees of freedom 

Multiple R-Squared: 0.727, Adjusted R-squared: 0.6997  

F-statistic: 26.63 on 5 and 50 DF,  p-value: 5.148e-13  

The question is: What does this all mean in normal words? The answer is given 
in Appendix A.3.3; a graph is made in which ABUND is plotted versus AREA, 
and 5 parallel lines are added. Each line represents the ABUND – AREA relation-
ship for a particular grazing level. The lines are parallel because there is no inter-
action term in the model. If you are not familiar with the underlying theory, then 
please read Chapter 5 in Zuur et al. (2007) or Appendix A in Zuur et al. (2009). 

We now discuss how to make this graph. Note that you need at least two or 
more explanatory variables in the model, or else Brodgar will give an error mes-
sage. In the linear regression window, select AREA as continuous explanatory 
variable and GRAZE as nominal explanatory variable, see Figure 5.11. 

 
 

 
 

Figure 5.11. Linear regression applied on the bird data from Loyn (1987). AREA 
(log transformed) and GRAZE are selected as explanatory variables. Note that it is 
also possible to add interactions. 

 
 
There is no need to run the model; just select the variables (interactions can be 

selected as well). Now click on “Visualise the model”, see also Figure 5.12. The 
clicking process is reasonable simple. First click on “Get current model”. The se-
lected covariates will be shown in the entrybox left of the button. If you want to 
make changes to the model, then you need to do this from the “Variables” and 
“Define interactions X” tabsheets; not from this entrybox.  
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 In step 2, you have to specify what you want to plot along the x-axis, and what 
you want to do with the other covariates. Click on the button “Specify what to 
plot”, see Figure 5.13.  

By default, the first selected continuous explanatory variable is selected as co-
variate to be plotted along the x-axis, which is ok in this case. Brodgar will give an 
error message if you select a nominal variable for the x-axis; it has to be one of the 
continuous explanatory variables.  

For GRAZE, we want to have a line for each level, hence stick to the “all levels 
of factor”. Alternative options are: mean, min, max, first quantile, third quantile, 
“mean, min and max”, “mean, first quantile and third quantile”, “specific value of 
factor”, and “all levels of factor”. Note that for a nominal covariate, it does not 
make sense to use the mean, min, max and quantile options. In this case, we can 
use all default selections. If you have multiple nominal explanatory variables, then 
use “all levels of factor” for one of them, and use the “specific value of factor” for 
all other covariates. Select a specific value that is part of the observed values of 
the covariate! If male and female are coded as 0 and 1, then you can only use these 
values as specific values! 

If you do not have a nominal covariate in your model, but only continuous ex-
planatory variables, then use the mean, min or max option for each covariate. One 
of them (but not more than one!) may have the “mean, min and max” option (or 
the equivalent quantile option). 

 
 
 

 
 

Figure 5.12. Window for visualising the results of the model. 
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Figure 5.13. Specify what to plot. 
 
 
In step 3, graph settings can be changed. We advice running the visualisation 

process first without changing any of these settings. If it works, you can start tidy-
ing up the graph. Click on the “Go” button, and Figure 5.14 appears. Each line 
represents the fitted values for a certain GRAZE level. The problem is that this 
figure needs axes labels, and a legend, and here is where things get complicated.  

Under the “3. Graph Settings” option in Figure 5.12 you can specify a legend, 
line styles, line thickness, colours of lines and labels, but this has to be done in R 
language. Before telling what to do, we show the end result, see Figure 5.15. Line 
type and colours were used, and a legend was added. For sure, this graph looks 
better than Figure 5.14! 
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Figure 5.14. Observed and fitted values. The x-axis contains AREA and the y-axis 
the bird abundance. The points are the observed values and the lines represent the 
ABUND – AREA relationship for each grazing level. 
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Figure 5.15. As Figure 5.14, but tidied up. 
 
 
Figure 5.16 shows how we changed the graph settings. The x and y-labels, and 

the main title are trivial. The “Use different colours”, “Use different line types” 
and “Use different line thickness” options are reasonable simple to adjust. Click-
ing on “yes” in the corresponding combobox enables the entrybox. The default 
value for each entrybox is: c(1,2,3). Each number is a different colour, line type or 
line thickness. Because there are 5 lines (5 grazing levels), you need to change this 
to: c(1,2,3,4,5). So, one number for each level. The numbers can be the same, or 
they can differ. For example, you can use c(1,1,1,2,2) for colour; this will create 
three black lines (for levels 1 2, and 3) and two red lines (for levels 4 and 5). Fig-
uring out which number does what is a bit a matter of trial and error. As quick 
guide: c(1,2,3,4,5) for the colour option gives black, red, green, blue and light blue 
colours. For line type these numbers give solid, ---, ..., -.- and -- -- -- lines. For line 
thickness, 1 is normal and 5 is thick. 

The legend bit is the most difficult part to change. It may help to start R, and 
type ?legend. See the examples at the end of the help file. The legend in Figure 
5.15 was added by changing the default code to: 

legend("topleft", legend=c("Graze 1", "Graze 2",  

       "Graze 3", "Graze 4", "Graze 5"),  

       col=c(1,2,3,4,5), lty=c(1,2,3,4,5), cex=0.8) 

Instead of topleft, you can also use topright, bottomright or bottomleft. There 
are five character strings for the second legend; all strings must be between quota-
tion marks. The col argument specifies the colour, and obviously this should 
match the colours that you choose for the lines. The same holds for the line style 
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(lty). You can also add lwd = c(1,2,3,4,5) for line thickness, but don’t forget the 
comma. The cex=0.8 specifies the font size of the text in the legend. Whatever 
you do, one little mistake and R gives and error message. This message will be at 
the end of the text file that appears. 

 

 
 

Figure 5.16. Graph settings to produce Figure 5.15. 
     

5.3 Generalised linear modelling in Brodgar 

A detailed introduction to GLMs for count data (Poisson, quasi-Poisson), and 
binary and proportional data (binomial) can be found in Chapter 6 in Zuur et al. 
(2007) and Chapters 8, 9 and 10 in Zuur et al. (2009). The second book also con-
tains information on GLMs with the negative binomial distribution. 

The steps to carry out a GLM in Brodgar are nearly identical as in linear regres-
sion. To illustrate the clicking process, we use the same data as in Section 9.5 in 
Zuur et al. (2009). The data set consists of roadkills of amphibian species at 52 
sites along a road in Portugal, and were kindly provided by Dr. António Mira 
(Universidade de Évora, Portugal). The data can be downloaded from: 
www.brodgar.com/Roadkills.xls. The response variable is TOT_N (the number of 
dead animals at a site), and all other variables are explanatory variables.  

After importing the data, click on Univariate. Instead of “Linear regression” se-
lect “Generalised linear modelling” in Figure 5.1, and click the “Go” button; it 
gives Figure 5.17. In Section 9.5 in Zuur et al. (2009), only the variable distance to 
the park, denoted by D_PARK, is used (the other explanatory variables are used in 
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later sections). Clicking the “Go” button in Figure 5.17 gives similar graphical and 
numerical output as in linear regression.  

 
 

 
 

Figure 5.17. Selection of response variable, distribution, link function and ex-
planatory variables. Newer R Brodgar versions also contain a “Visualise the 
model” tabsheet, see Section 5.2.4. 

 
 
The numerical output is given below. 

############################################ 

#### NUMERICAL OUTPUT GLM               #### 

############################################ 

No weights  were used 

Model is given by f1: 

Y1 ~ 1 + D_PARK 

Call: 

glm(formula = Y1 ~ 1 + D_PARK, family = poisson(link = "log"),  

    data = dataz, weights = XW, na.action = na.omit) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-8.1100  -1.6950  -0.4708   1.4206   7.3337   

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  4.316e+00  4.322e-02   99.87   <2e-16 *** 

D_PARK      -1.059e-04  4.387e-06  -24.13   <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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(Dispersion parameter for poisson family taken to be 1) 

    Null deviance: 1071.4  on 51  degrees of freedom 

Residual deviance:  390.9  on 50  degrees of freedom 

AIC: 634.29 

Number of Fisher Scoring iterations: 4 

Deviance parameter                        =  390.9  

n           (null degrees of freedom)     =  51  

df.residual (residual degrees of freedom) =  50  

df          (n-df.residual)               =  1  

Deviance/df.residual =  7.82  

AIC according to formula: -2log(Likelihood) + 2*df   = 634.29  

 Because we selected a GLM with Poisson distribution, the overdispersion pa-
rameter is set to 1. Hence, the sentence: 

(Dispersion parameter for poisson family taken to be 1) 

This does not mean that there is no overdispersion. Dividing the residual devi-
ance by the residual degrees of freedom shows that our assumption is incorrect. 
This ratio is also presented at the end of the numerical output: 

Deviance/df.residual =  7.82  

Because this ratio is larger than 1, you should refit the model with a quasi-
Poisson “distribution”. This is done by closing all windows with graphical and 
numerical output, and change the distribution from Poisson to quasiPoisson in 
Figure 5.17. The relevant numerical output is now: 

... 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  4.316e+00  1.194e-01  36.156  < 2e-16 *** 

D_PARK      -1.058e-04  1.212e-05  -8.735 1.24e-11 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

(Dispersion parameter for quasipoisson family taken to be 7.630149) 

    Null deviance: 1071.4  on 51  degrees of freedom 

Residual deviance:  390.9  on 50  degrees of freedom 

AIC: 661.56 

Number of Fisher Scoring iterations: 4 

Deviance parameter                        =  390.9  

n           (null degrees of freedom)     =  51  

df.residual (residual degrees of freedom) =  50  

df          (n-df.residual)               =  1  

Deviance/df.residual =  7.82  

... 

The dispersion parameter is 7.63, and all standard errors are automatically ad-
justed. Note that in quasi-Poisson models, the AIC is not defined. The problem 
with this model is that it has clear residuals patterns, see Figure 9.6 in Zuur et al. 
(2009).  

If you have multiple explanatory variables, then a stepwise model selection can 
be applied. For a Poisson (or binomial) GLM it follows the same steps as in linear 
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regression. Click the “Settings” tab in Figure 5.17. It gives the same window as in 
the lower panel in Figure 5.3; select backward selection. Alternatively, select the 
drop1 option, but ensure that the Chi-square test is selected and not the F-test (this 
one is needed for quasi-Poisson models). For quasi-Poisson models, model selec-
tion should be based on dropping the least significant term. Alternatively, use the 
negative binomial distribution (see below). 

For binary data, quasi-binomial models should not be applied. For proportional 
data (see below), you can select quasi-binomial models if there is overdispersion. 

5.4 GLM examples from Zuur et al. (2007; 2009) 

5.4.1 Section 21.6 in Zuur et al. (2007) 

In section 21.6 of Zuur et al. (2007), the presence and absence of the flatfish 
Solea solea was modelled as a function of temperature, salinity, gravel and month 
(nominal) using a GLM with a binomial distribution. The data were imported and 
used in Chapter 4 of this manual. To obtain the results presented in Table 21.3, se-
lect the variables and distribution as shown in Figure 5.18. 

 

 
 
Figure 5.18. Selection of variables, distribution and link function for the Solea 
solea data. Clicking the “Go” button gives the results in Table 21.3 in Zuur et al. 
(2007). To obtain the results in Table 21.4, click on “Settings”, and apply the 
drop1 option for “Forward/backward selection”. Make sure that the Chi-square 
test is selected. 
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5.4.2 Section 10.3 in Zuur et al. (2009) 

In Section 10.3 of Zuur et al. (2009), the results of a binomial GLM applied on 
proportional data is presented. Vicente et al. (2006) analysed data from a number 
of estates with wild boar and red deer in Spain. At each estate i, a group of ni ani-
mals was sampled. The data set contains information on the tuberculosis (Tb) dis-
ease in both species, and on the parasite Elaphostrongylus cervi, which only in-
fects red deer. Both variables are recorded as the number of animals that are 
positive for Tb, or have the parasite E. cervi. So, we are modelling the number of 
animals that test positive, out of ni animals. There is also information on the main 
characteristics of the habitat and management (fencing) at each estate: The per-
centage of open land, scrubs and pine plantation, number of quercus plants per 
area, number of quercus trees per area, a wild boar abundance index, a reed deer 
abundance index, estate size (ha) and whether the estate is fenced (1 = yes, 0 = 
no). 

Import the data from the file www.brodgar.com/TBDeer.xls. Select the variable 
DeerPosProp as response variable; this is the ratio between the number of positive 
cases and number of observations at a site). Select the following variables as ex-
planatory variables in the data import process: OpenLand, ScrubLand, Quercus-
Plants, QuercusTrees, ReedDeerIndex, EstateSize, fFenced and DeerSampled-
Cervi. The last variable is the number of observations at a site. Go to the GLM 
menu, and select the variables, distribution, link function and weighting factor (!) 
as shown in Figure 5.19. Clicking the “Go” button gives the same numerical out-
put as presented in Section 10.3 in Zuur et al. (2009). The numerical output will 
show that there is overdispersion, and Section 10.3 continuous with a quasi-
binomial model. To do this in Brodgar, change the binomial distribution to “qua-
sibinomial”. The drop1 option can be used to obtain p-values, but the F-statistic 
needs to be selected for quasi-binomial models. 
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Figure 5.19. Selection of variables, distribution, link function and weights for the 
deer data. Clicking on the “Go” button produces the output presented in Section 
10.3 in Zuur et al. (2009). Note that the number of observations per site is used as 
a weighting factor, and the proportion of success (positive cases) as the response 
variable. 

 

5.4.3 Section 9.10 in Zuur et al. (2009) 

We return to the roadkill data that was also used in Chapter 4 and in Section 
5.3. Zuur et al. (2009) applied a GLM with the negative binomial distribution on 
these data, and presented results in their Section 9.10. 

Import the data again, but apply a square root transformation of the following 
explanatory variables: POLIC, WAT.RES, URBAN, OLIVE, L.P.ROAD, 
SHRUB, and D.WAT.COUR, see also Figure 5.20. To apply the GLM with a 
negative binomial distribution, go to the GLM menu and select the variables, dis-
tribution, and link function as in Figure 5.21. If you stick to the default value 
“Auto” for Theta, then the extra variance term in the negative binomial distribu-
tion is automatically estimated (this option was implemented in Brodgar version 
2.5.7 and higher). In case of numerical problems, set it to a pre-fixed value. 

The numerical output of the negative binomial GLM is fully discussed in Sec-
tion 9.10 in Zuur et al. (2009). 
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Figure 5.20. The square root transformation is applied on the explanatory vari-
ables POLIC, WAT.RES, URBAN, OLIVE, L.P.ROAD, SHRUB, and 
D.WAT.COUR. 

 
 

 
 
Figure 5.21. Selection of variables, distribution, link function and parameter theta. 
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5.5 Generalised additive modelling in Brodgar  

Older versions of Brodgar had two options for GAM, namely: 

1. Generalised additive modelling using the gam package based on Hastie and 
Tibshirani (1990). 

2. Generalised additive modelling using the gam function based on the package 
mgcv from Wood (2006). 

Both packages do generalised additive modelling, but the implementation is 
rather different. The gam package from Hastie and Tibshirani is similar to the 
SPLUS gam function, and is capable of a backwards selection. However, the 
mgcv library is useful too as it can estimate the optimal degrees of freedom for a 
smoother using cross-validation. 

In 2007, we decided to use only the gam function from mgcv in Brodgar as it 
also allows for nested data, auto-correlation and heterogeneity. Note that different 
versions of the mgcv package in R may give slightly different numerical output 
(Wood 2006). Additive modelling is generalised additive modelling in which the 
identity link function and Gaussian distribution are used.  

We illustrate GAMs in Brodgar using the squid data set, see also Chapter 4 of 
this manual. The data are in the file www.brodgar.com/Squid.xls, GSI is the re-
sponse variable, and SEX, Location, MONTH and YEAR the explanatory vari-
ables. We will fit the following model (see also page 116 in Zuur et al., 2007). 

GSIi = α + f(MONTHi) + YEARi + Locationi + SEXi + εi 

We will also discuss how to add interactions between YEAR, Location and 
SEX, and between Location and MONTH. A Gaussian distribution is assumed for 
the error term εi. To run a GAM (using the mgcv package) in Brodgar, select 
“Generalised additive modelling (mgcv)” in Figure 5.1 and click on the “Go” but-
ton. The window that pops up is in Figure 5.22. The panels are similar to the linear 
regression menus. Each of the panels and options is discussed next. 

5.5.1 Selection of variables 

You need to select one response variable, at least one smoother, and optionally, 
parametric terms and nominal variables.  
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Figure 5.22. Selection of response variable (top row), distribution and link func-
tion, smoother (large box), parametric variables and nominal variables. No ex-
planatory variables have been selected yet. 

 

Response variable 

In this case, GSI is the response variable. If you have multiple species, then you 
can also use a diversity index. 

Explanatory variables – Smoothers, parametric terms and nominals 

This is potentially confusing. Brodgar allows you to specify models of the 
form: 

Yi = α + f(X1i) + β × X2i + factor(X3i) + εi 

The f(X1i) bit is a smoother, X2i is modelled as a parametric term (and X2i needs 
to be a continuous explanatory variable), and finally, X3i is modelled as a categori-
cal variable. For the squid data, we want to use a model of the form: 

GSIi = α + f(MONTHi) + YEARi + Locationi + SEXi + εi 
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Hence, there is no (continuous) parametric component in this model, only a 
smoother of month and three nominal explanatory variables. Smoothers should be 
selected in the big box by clicking the “Add” button. It opens the window in Fig-
ure 5.23. We double clicked MONTH in this window in order to select it as a 
smoother. We will discuss the options later. To close the window, click the “Ap-
ply” button. 

As to the nominal variables, select them in the lower right box in Figure 5.22.  
  
 

 
 

Figure 5.23. Selection of a smoother. We double clicked on MONTH in order to 
select it. For the moment, leave all options as default. To finalise the selection, 
click the “Apply” button. 

 

5.5.2 Distribution and link function 

One has to specify the distribution and link function. See Zuur et al. (2007) for 
an explanation. We selected the identity link and Gaussian distribution. For count 
data, it is common to use the Poisson distribution with the log link function. Select 
‘QuasiPoisson’ if you want to allow for overdispersion. It is also possible to use 
the negative binomial distribution with the log-link function. The Binomial distri-
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bution is used for 0-1 or proportional data. Only select the ‘QuasiBinomial’ if you 
want to allow for overdispersion in the binomial model and have multiple observa-
tions per site.  

5.5.3 Weights 

It is possible to use a weighted (generalised) additive model (like in weighted 
linear regression); create a column in Excel containing the weight for each obser-
vation, select it as an explanatory variable in the data import process, and select it 
as weights in Figure 5.22. Please make sure that the variable defining the weights 
does not contain missing values, negative values of zeros! 

5.5.4 Results 

Your selection of explanatory variables and other settings should now look like 
ours in Figure 5.24. Clicking the “Go” button gives the smoother in Figure 7.10B 
and the numerical output on page 117 in Zuur et al. (2007). The model validation 
graphs are similar as in linear regression, see Section 5.1 of this manual, and pages 
117 – 119 in Zuur et al. (2007). 

5.5.5 Graphs settings and settings 

Graph settings 

Various trivial graph settings can be changed. The model validation tools for 
additive modelling contain partial plots showing the partial effects of each 
smoother, residuals versus fitted values, a QQ-plot of the residuals, hat values, a 
histogram of the residuals, the response variable (Y) versus fitted value and the re-
sponse variable versus the linear predictor. For additive modelling, the last two 
graphs are the same, but they differ for generalised additive models. See the linear 
regression sections for more details. 

Settings 

Most options under the “Settings” window are graphical settings. The user can 
add/remove the standard error curves, residuals, rugplots (vertical lines at the x-
axis indicating the values of the observed data) to the partial fits. Residuals and 
fitted values can be stored or copied to Excel. Values with large hat values can be 
identified and useful model validation graphs are residuals versus each individual 
explanatory variable. To guide the eye, smoothers can be added or removed from 
these graphs. 
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Figure 5.24. Our selection for the smoother, and nominal variables. Clicking the 
go button gives the smoother in panel 7.10B, and the numerical output on page 
117 in Zuur et al. (2007). Note that the gam function from mgcv applies cross-
validation to estimate the optimal amount of smoothing for MONTH. 

 

5.5.6 Changing options for the smoothers 

The bottom part of Figure 5.23 has all kinds of scary looking options. The first 
two are easy. By default, Brodgar tells the mgcv package to apply cross-validation 
to estimate the optimal amount of smoothing. Sometimes, it may be better to fix 
the degrees of freedom to a preset value, e.g. to 4 (default value in SPLUS). To do 
this, change the second option “fix number of degrees of freedom (fx)” to yes, and 
set the base dimension to 5 (the degrees of freedom is k – 1), see also Figure 5.25.  

The last option, “A covariate to multiply by (by)” allows for interaction be-
tween a smoother and a nominal variable, and is discussed in the next subsection. 

The third option, “Basis to use (bs)” tells the mgcv package what type of 
smoother to use. Start R, type library(mgcv), and then type: ?s. This opens a 
help file with detailed information on the “bs” option: 

bs: this can be "cr" for a cubic regression spline, "cs" for a cu-

bic regression spline with shrinkage, "cc" for a cyclic (periodic) 
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spline, "tp" for a thin plate regression spline, "ts" for a thin 

plate regression spline with shrinkage or a user defined character 

string for other user defined smooth classes. Of the built in alter-

natives, only thin plate regression splines can be used for multidi-

mensional smooths. Note that the "cr" and "cc" bases are faster to 

set up than the "tp" basis, particularly on large data sets (although 

the knots argument to gam can be used to get round this).  

The default value in the gam function in mgcv (and therefore Brodgar) is bs = 
“tp”, hence a thin plate regression spline is used. Information on the other 
smoothers can be found in Wood (2006) and Zuur et al. (2009). The cc option is 
relevant for the MONTH smoother; it ensures that December is connected to 
January.  

The last option we discuss is the “order of the penalty (m)”. This is a parameter 
used in Wood (2006) to make the curves smoother. The help file reads: 

m: The order of the penalty for this t.p.r.s. term (e.g. 2 for normal 

cubic spline penalty with 2nd derivatives). O signals autoinitializa-

tion, which sets the order to the lowest value satisfying 2m>d+1, 

where d is the number of covariates: this choice ensures visual 

smoothness. In addition, m must satisfy the technical restriction 

2m>d, otherwise it will be autoinitialized. 

To obtain further information on GAM, start R, load the mgcv package from 
the Packages menu and type: ?gam.  

 

 
 

Figure 5.25. Smoother with 4 degrees of freedom. No cross-validation will be ap-
plied. The resulting smoother is presented in Figure 7.10A, and the output on page 
116 of Zuur et al (2007). 
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5.5.7 Interactions  

Interactions between nominal variables 

This is identical as in linear regression. Click on the “Interaction” tab in Figure 
5.24. Including interactions between nominal variables, or between a nominal and 
a parametric term is identical as in linear regression.  

Interactions between a smoother and a nominal variable 

Suppose you want to test whether the Month effect differs per location. The by 
command in Figure 5.23 allows one to select four smoothers for MONTH; one for 
each location. This process consists of two steps. First, you need to go back to the 
“Import data” menu, and in “Change Data to be imported” you have to create four 
new columns with zeros and ones. Let us call these columns Location_1, Loca-
tion_2, Location_3 and Location_4. If an observation is from location 2, then Lo-
cation_2 should be 1, and Location_1, Location_3 and Location_4 should be zero. 
Luckily, Brodgar has a build-in function to do this. Go to “Import Data”, and click 
“Change data to be imported”. Now click on the label Location. It will highlight 
the entire column Location. Click on “Edit” | “Column” | “Generate dummy vari-
ables”, and there they are, see Figure 5.26! Click on “Continue” and “Save 
Changes and Finish Import Data process”.  

 
 

 
 
Figure 5.26. Four extra columns for location. We ended up in this window by 
clicking “Import Data” | “Change data to be imported”, click on the label Loca-
tion, and click on “Edit” | “Column” | “Generate dummy variables”.  Now click on 
“Continue” and “Save Changes and Finish Import Data process”.  
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Return to the GAM menu, and select the nominal variables as before. Carry out 
the following four steps: 

1. Click the “Add” button for adding MONTH as a smoother in Figure 5.22.  
2. Double click MONTH so that it is selected as a smoother in Figure 5.23. 
3. For the option “A covariate to multiply by (by)“, select Location_1. 
4. Click on Apply in Figure 5.23. 

You need to repeat this three more times, and each time select a different 
dummy for Location. Once you are finished, your selection should match ours in 
Figure 5.27. To judge whether this model is any better than the model with only 
one smoother, compare the AICs. 

 
 

 
 

Figure 5.27. Selection of smoother and nominal variables for a GAM that contains 
an interaction term between the smoother MONTH and the nominal variable Lo-
cation. Note that there are four smoothers. 
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5.5.8 Specialised corner 

Let us return to the situation in which we only have one smoother for MONTH 
and the three nominal variables YEAR, LOCATION and SEX, see Figure 5.22. 
And suppose we want to compare the following two models with each other: 

GSIi = α + f(MONTHi) + YEARi + Locationi + SEXi + εi 

GSIi = α + f(MONTHi) + εi 

Clearly, these models are nested, and we can therefore compare them with an 
F-test. Select the smoother and three nominal variables as in Figure 5.22, and click 
the tab “Specialised corner” in Figure 5.22. The window in Figure 5.28 appears. 
Click on both “Get current” buttons, and remove the three nominal variables from 
the nested model (lower box), see Figure 5.28 for our settings. Clicking the second 
“Go” button applies a GAM on the full, and on the nested model, and at the end of 
the numerical output, an ANOVA table is presented in which both models are 
compared. 

 

 
 

Figure 5.28. Using the specialised corner to compare two nested models. The text 
in the first box (full model) reads: 1 + s(MONTH) + as.factor(YEAR) + 
as.factor(Location) + as.factor(Sex), and the text in the second 
box for the nested model is: 1 + s(MONTH). 
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5.6 GAM examples from Zuur et al. (2009) 

5.6.1 GAM with multiple smoothers 

In Section 3.5 in Zuur et al. (2009), the vegetation data are used to illustrate a 
GAM with multiple smoothers. These data were also used and imported in Chap-
ter 4 of this manual. The GAM we apply is of the form: 

 

Richnessi = α + f(ROCKi) + f(LITTERi) + f(BARESOILi) + f(FallPreci) +  
                       f(SprTmaxi) + εi 

To apply this model in Brodgar, import the data, set all species as response 
variables and select all other variables as explanatory variables in the data import 
process. In the GAM menu, select richness as the response variable. Just like Sec-
tion 3.5, we use the Gaussian distribution (though one may argue that a Poisson 
distribution is more appropriate as richness is a count). 

We also allow the cross-validation method to come up with any degrees of 
freedom for each smoother, including 0 degrees of freedom. All smoothers with 0 
degrees of freedom can be dropped simultaneously. This is done by selecting a 
smoother with shrinkage, see Section 3.5 in Zuur et al (2009). 

The potential confusing thing is that you have to repeat the following process 
for each smoother: 

1. Click on the “Add“ button in Figure 5.22. 
2. Select the cc smoother under the “basis to use (bs)“ option in Figure 5.23. 
3. Click on the ”Apply“ button in Figure 5.23. 

What you should not do is click on “Add“ in Figure 5.22, and the select all 
smoothers in this window. If you do this, a 5-dimensional smoother will be ap-
plied. Once you are finished, your selection should match ours in Figure 5.29. 

See Section 3.5 in Zuur et al. (2009) for a discussion of the output and prob-
lems like collinearity for these data. 
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Figure 5.29. Selection of smoothers for the GAM: Richnessi = α + f(ROCKi) + 
f(LITTERi) + f(BARESOILi) + f(FallPreci) + f(SprTmaxi). 

 

5.6.2 GAM with an offset 

In Section 9.11 in Zuur et al (2009), data from Penston et al. (2008) are used. 
Plankton tows were taken approximately weekly at two depths (0 meter and 5 me-
ter) at five stations for two years. In the original paper, numbers of nauplii and co-
pepodids were analysed in two separate univariate analysis where production 
week (time expressed in weeks since March 2002, when the local farms stocked 
their cages with lice-free, juvenile fish), station and depth were the covariates. 
There are five stations, labelled as A, C, E, F and G. In Section 9.11, copepodids 
were used.  

One of the problems with these data is that for each sample, a different volume 
was used. To deal with this, a GLM (or GAM) with an offset variable can be used. 
See Section 9.11 for the underlying theory. To do this in Brodgar, add an extra 
column to the original data in Excel, and calculate the (natural) logarithm of vol-
ume. Import the new data into Brodgar. In case of any errors in Brodgar, avoid 
importing data generated by formulae; copy and paste the log-transformed data in 
Excel as values before importing them into Brodgar (we have seen this problem 
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on only a very few computers). In Brodgar, select the logarithmic transformed 
volume as an explanatory variable during the data import process, and in the GAM 
or GLM with Poisson, quasi-Poisson or negative binomial distribution, select this 
variable in the offset option in Figure 5.22. Do not select volume, or the log vol-
ume as an explanatory variable in the GAM or GLM. 

5.7 Regression and classification trees in Brodgar 

To illustrate how to run tree models in Brodgar, we use the data from Chapter 
24 in Zuur et al. (2007). The chapter looks at possible effects of wind farms on 
birds. The original data consisted of echoes with their associated characteristics as 
stored by the radar software, plus information from the observer who verified the 
type of object associated with that of the echo. This information was divided into 
different categories: 

• General information (e.g., date, time). 
• Information recorded by the observer at the same moment as the echo was 

made (e.g., species, flock size, flight altitude). 
• Echo appearance information (e.g., echo dimensions, reflectivity). 
• Echo position (e.g., x and y coordinates in the radar plane, distance from radar). 
• Echo movement (e.g., speed). 

Some of these variables represent the same ecological information and had high 
(>0.8) correlations. Using common sense and statistical tools like correlations and 
principal component analysis, we condensed the number of original variables into 
a subset of important characteristics.  

The verified dataset consists of 659 cases divided over 16 groups. In Chapter 
24, 9 different birds groups were classified with at least 10 observations resulting 
in 629 observations. The nine groups in the analysis were auks, air clutter, water 
clutter, divers, geese and swans, gulls, sea ducks, ships and terns.  

The data are given in the file www.brodgar.com/radar_tree_data.xls. Import the 
data (note that the first two columns should not be imported as these contain al-
pha-numerical values). Set the variable g9 as response variable and EPT, TKQ, 
TKT, AVV, VEL, MXA, AREA, MAXREF, TRKDIS, MAXSEG, ORIENT, 
ELLRATIO, ELONG, COMPACT, CHY, MAXREF1, MINREF and           
SDREF all as explanatory variables. Click on “Trees” in Figure 5.1, and the result-
ing graph is presented in the top panel in Figure 5.30.  

Selecting variables is similar as in linear regression. The only extra option is 
whether you want to do regression or classification trees. In this case, we want the 
latter one. Clicking the “Go” button gives a classification tree. To obtain the tree 
in Figure 24.3, set the cp value in the lower panel in Figure 5.30 to 0.0323. 
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Figure 5.30. Univariate tree models in Brodgar. 
 

Settings and labels 

• Add labels. Labels are the classification rules. Try to use short variable names. 
It might be an option to omit them.  

• Label size. Increase or decrease the size of the labels. 
• Complexity parameter (cp). Choose the complexity parameter cp. A good 

choice of cp is the leftmost value for which the mean (dot) lies below the hori-
zontal line, in the cp plot. 
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• Minimum split. If there are lots of branches, it might be an option to make the 
tree smaller by only allowing new branches if there are at least x samples in a 
group. This is a sort of pre-pruning. 

• Add info N. This provides information on the group sizes.  
• Uniform vertical spaces (source: R help files). If `yes', uniform vertical spacing 

of the nodes is used. This may be less cluttered when fitting a large plot onto a 
page. The default is to use a non-uniform spacing proportional to the error in 
the fit.  

• Shape of branches (source: R help files). This controls the shape of the 
branches from parent to child node. Any number from 0 to 1 is allowed.  A 
value of 1 gives square shouldered branches, a value of 0 give V shaped 
branches, with other values being intermediate. 

• Compress leaf nodes (source: R help files). If `no', the leaf nodes will be at the 
horizontal plot co-ordinates of `1:nleaves'. If `yes', the R routine attempts a 
more compact arrangement of the tree. The algorithm assumes `uniform verti-
cal spaces=yes'. The result is usually an improvement even when `uniform ver-
tical spaces=no'.  

• Set random seed. By setting the random seed, the cross-validation will produce 
the same results each time it is applied.  

• Other points are the titles, graph name and graph type; see Sections 5.1 and 5.2 
for details. 

5.8 Mixed effects modelling in Brodgar 

A non-technical introduction to mixed effects modelling is given in Chapter 8 
of Zuur et al. (2007), and in Chapter 5 of Zuur et al. (2009). In Chapter 8 in Zuur 
et al. (2007), a series of linear regression models were applied on the RIKZ data 
(marine benthic data set). The response variable was species richness and the ex-
planatory variable was NAP (height of a site compared to average sea level). The 
data were sampled at 9 beaches (5 samples per beach) and the question is whether 
there is a relationship between richness and NAP.  

5.8.1 The random intercept model 

We start with the random intercept model, see model 5 on page 128 in Zuur et 
al. (2007). The equation for a random intercept model is reproduced below. 

 Model 5 
NAP

ij ij j ij
Y aα β ε= + × + +  

where    2~ (0, )
j a

a N σ   and 2~ (0, )
ij

Nε σ  

Yij is the richness of observation i on beach j, where the index j takes values 
from 1 to 9, and i from 1 to 5 (there are 5 observations per beach). The model 
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states that there is one intercept α and one slope β. This part of the model is called 
the fixed part. On top of this, there is a random incept aj, which adds a certain 
amount of random variation to the intercept at each beach. The random intercept is 
assumed to follow a normal distribution with expectation 0 and variance σa

2. 
We show how to apply this model in Brodgar for the RIKZ data. These data 

were used in earlier chapters of this manual, and can be downloaded from the 
URL: www.highstat.com/RIKZ.xls. Open the data in Excel, import them to Brod-
gar, select the columns labelled as C1 to I5 as response variables (these are all the 
zoobenthic species), and all other columns as explanatory variables. Once the data 
are imported, click on the “Univariate” main menu button. Select the tab “GLS, 
mixed modelling & GAMM”. The window in Figure 5.31 appears. As the name of 
the tab suggest, you can select from generalised least squares (GLS), linear mixed 
effects modelling and generalised additive mixed modelling (GAMM). We discuss 
GLS and GAMM later. Select “Linear Mixed Effects Models” and click on the 
“Go” button. The resulting graph is presented in Figure 5.32. 

 
 

 
 

Figure 5.31. Options under the “GLS, mixed modelling & GAMM” tab.  
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Figure 5.32. Selection of the response variable and the fixed effects part of the 
model. We selected species richness as the response variable (ensure that only the 
75 species are selected as response variables in the data import process!) and NAP 
as continuous explanatory variable. 

 
 
In the panel labelled “Fixed variables” in Figure 5.32, you need to select a re-

sponse variable (we selected species richness) and the fixed part of the model (we 
selected NAP). The clicking process is identical as in linear regression, see Sec-
tion 5.1. If multiple explanatory variables are selected, you can also add interac-
tions and this can be done in the panel labelled “Define fixed interactions”. The 
clicking process is identical as in linear regression, see Section 5.1.7. However, in 
this particular example, there is no scope for interactions as we only use one ex-
planatory variable. 

Click on the tab labelled “Random effects” in Figure 5.32; the resulting win-
dow is presented in Figure 5.33. From the box “Select grouping factors”, select the 
variable Beach, and click on the “Add” button. Note that the white box on the 
lower left side contains (by default) a “1”. Keep it in. Clicking on the “Go” button 
will execute the random intercept model. Internally, Brodgar sets up ascii files 
with R commands, runs R in BATCH mode, and applies the mixed effects model 
using the lme function from the nlme package. When R is finished, all results are 
saved in text files and Brodgar shows the results, see Figure 5.34. The graph 
shows the (normalised) residuals versus fitted values, and this graph can be used 
to assess the homogeneity assumption. The button “Next graph” leads to a histo-
gram of the normalised residuals, and can be used to assess the normality assump-
tion. The numerical output can be obtained by clicking the “Numerical output” 
button. It is discussed in detail on pages 128 – 129 in Zuur et al. (2007). Note that 
the anova table at the end of the numerical output applies sequential testing.  
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Figure 5.33. Application of a random intercept model. Beach is selected as ran-
dom intercept. 

 

 
 

Figure 5.34. Output from the lme function in R. The first graph shows residuals 
versus fitted values, and can be used to assess homogeneity. 
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5.8.2 Settings 

Various settings can be changed; click on the “Settings” tab in Figure 5.35. 
Some settings are trivial (e.g. the number of digits), others are important. An im-
portant option is the “Model fitting method”; by default this is restricted maximum 
likelihood (REML). A detailed explanation when to use REML and when ML 
(maximum likelihood) can be found in Chapter 5 of Zuur et al. (2009). See their 
10-step protocol in Chapter 4. 

The options in Figure 5.35 also allow one model heterogeneity, or temporal and 
spatial correlation structures, and these are discussed later in this chapter. For the 
moment, keep all settings as they are. 

 
 

 
 

Figure 5.35. Options for mixed effects models. By default, REML estimation is 
used. We assume that residuals are homogenous, and independent; hence, the “no” 
for “Allowing for heterogeneity” and “Allowing for correlation”. The contrast for 
categorical variables is the so-called “Treatment” option. This means that the first 
level is used as baseline. 

 

5.8.3 The random intercept and slope model 

Model 5 is a mixed effect model with a random intercept. Hence, the regression 
line is allowed to randomly shift up or down. Extending this process to a model in 
which not only the intercept is allowed to vary randomly but also the slope follows 
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the same principle. This is called a random intercept and slope model. The 
mathematical formulation of the model is given by: 

Model 6 
NAP

ij j ij j ij ij
Y a b NAPα β ε= + + × + × +  

where    2~ (0, )
ij

Nε σ  and 2~ (0, )
j a

a N σ  and 2~ (0, )
j b

b N σ  

The equation was taken from page 129 in Zuur et al. (2007). This is the same 
formulation as model 5, except for the term bj × NAPij. It allows for random varia-
tion of the slope at each beach. 

To fit this model in Brodgar, go to the “Random effects” window in Figure 
5.33, click on the “+” button and double click on NAP. The window should now 
look like the one in Figure 5.36. Clicking the “Go” button applies the random in-
tercept and slope model. The numerical results are given on page 129 – 130 in 
Zuur et al. (2007); note the small differences in estimated values (this is probably 
a typing mistake in the book). 

 
 

 
 
Figure 5.36. Application of a random intercept and slope model. The variable 
Beach is selected as “Nested grouping factor” and the lower left box reads: 1 + 
NAP. 

 

5.8.4 Specialised corner for mixed effects models 

It is interesting to compare a mixed effects model that contains the random in-
tercept Beach, with a model that does not contain the random intercept Beach. 
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These models are nested, and therefore the likelihood ratio test can be applied. 
The null hypothesis is whether the variance for the random intercept Beach is 0.  

To do this test in Brodgar, select Richness and NAP as in Figure 5.32. Also se-
lect the random intercept Beach as in Figure 5.33. In the “Settings” menu, ensure 
that REML estimation is selected. Now click on the “Specialised corner” tab in 
Figure 5.35. We get the window in Figure 5.37. Click on both “Get current” but-
tons, and then remove the code for the “Random effects part” for the nested 
model. Your settings should look like ours. Note that both models have the same 
fixed structure, and REML is selected. The sub-model is actually a GLS (see be-
low) because no random intercept is specified. 

Click the second “Go” button, and after Brodgar is finished, the end of the file 
with numerical output shows the following output: 

=============== ANOVA table for the submodels =============== 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Submodel1    1  4 247.4802 254.5250 -119.7401                         

Submodel2    2  3 258.2010 263.4846 -126.1005 1 vs 2 12.72075   4e-04 
 
 
 

 
 

Figure 5.37. Specialised corner menu to compare two models with the same fixed 
effects, but with different random effects (or vice versa). In this case, we compare 
a model with a random intercept Beach, with a model that does not contain a ran-
dom intercept (a GLS model). 
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The likelihood ratio statistic is L = 12.72. The R code that generated the p-value 
assumes that L is Chi-square distributed with 1 degree of freedom. The problem is 
that we are testing on the boundary (the variance of the random intercept is 0, with 
the alternative that the variance is larger), and therefore the p-value needs to be 
adjusted, see Chapter 5 in Zuur et al. (2009). To obtain the correct p-value, start R, 
and type: 

> 0.5 * (1 – pchisq(12.72,1)) 

followed by an enter.  
To compare a model with a random intercept, and a model with a random inter-

cept and slope, use a similar structure: 

1. Specify the random intercept and slope model as explained in Figure 5.36. 
2. Go to the „Specialised corner“ and click both “Get current“ buttons. 
3. Change the random structure of the sub-model to:  

    ~ 1  | as.factor(Beach). 
4. Click the second “Go“ button. 

An example is given in the next subsection. 

5.8.5 Mixed effects modelling example from Zuur et al. (2009) 

In Chapter 19 of Zuur et al. (2009), mixed effects modelling is applied to model 
the density of Paenibacillus  larvae in honey bees as a function of the number of 
bees in the hive, presence or absence of American Foulbrood (AFB, an infectious 
disease) and hive identity. The following model was applied: 

LSpobeeij =α + β1 × BeesNij + β2 × Infectionij +  

β3 × BeesNij × Infectionij +ai + εij 
 

LSpobeeij is the logarithmic transformed density of spores, BeesNij the number 
of bees in hive i, and Infectionij is a nominal variable indicating whether a hive is 
infected (1) or not (0). The term ai is the random intercept for hive. Full details 
can be found in Sections 19.1 and 19.2 in Zuur et al. (2009). 

Import the data from www.highstat.com/BeesHives.xls. The first column con-
tains data. Set SpoBee as response variable and apply a log(Y+1) transformation 
on it. The variables Hives, BeesN and Infection are explanatory variables. It is 
useful to apply a data exploration to reproduce Figures 19.2 and 19.3. Also apply a 
linear regression to model SpoBee (log transformed) as a function of BeesN, In-
fection, and their interaction. You should also be able to produce Figure 19.4 
(store the residuals, copy and paste them in the spreadsheet via “Change Data” 
under the main menu “Import”, and make a boxplot under data exploration). We 
now apply mixed effects modelling and follow the 10-steps protocol as outlined in 
Section 19.3 in Zuur et al. (2009). 
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Step 1 of the protocol 

In this step, linear regression is applied. See the previous paragraph. 

Steps 2 – 6 of the protocol 

First, we need to refit the linear regression model without any special variance 
structure using the GLS function. This gives us a reference model. We cannot use 
the ordinary linear regression function from Section 5.1, as it uses ordinary least 
squares. Instead, use the GLS option in Figure 5.31, select the response and the 
two explanatory variables (BeesN is continuous, Infection is nominal), and their 
interaction. Ensure that the default estimation method, “Restricted log-likelihood”, 
alias REML, is selected (Settings – “Model fitting method by REML or ML”). 
The relevant numerical output is: 

Generalized least squares fit by REML 

  Model: Y1 ~ 1 + BeesN + Infection + BeesN:Infection  

  Data: dataz2  

  AIC BIC logLik 

  252 263   -121 

Coefficients: 

                 Value Std.Error t-value p-value 

(Intercept)       2.64     0.526    5.02  0.0000 

BeesN             0.00     0.000   -1.73  0.0876 

Infection1        3.65     0.875    4.17  0.0001 

BeesN:Infection1  0.00     0.000   -1.20  0.2353 

This model gives us an AIC of 252, but does not take into account the explana-
tory variable Hive. To use Hive as a random intercept, close the numerical output, 
and GLS menu, and click on “Linear Mixed Effects Models” in Figure 5.31. Se-
lect exactly the same fixed structure, namely BeesN as a continuous explanatory 
variable, Infection as a nominal explanatory variable, and their interaction. See the 
top and middle panels in Figure 5.38. To select Hive as a random intercept, click 
on “Random effects” and select Hive for “Nested grouping factors”, see the lower 
panel in Figure 5.38. Also ensure that the default estimation method, REML, is 
used. If you click on any of the three “Go” buttons in Figure 5.38, the mixed ef-
fects model in Equation (19.1) in Zuur et al. (2009) is applied. The relevant part of 
the numerical output is given below. 
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Figure 5.38. Top panel: Selection of response and explanatory variables for the 
fixed part of the mixed effect model. Middle panel: Selection of interaction for the 
fixed part of the model. Lower panel: Selection of the random intercept. 
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Linear mixed-effects model fit by REML 

 Data: dataz2  

  AIC BIC logLik 

  175 188  -81.5 

Random effects: 

 Formula: ~1 | Hive 

        (Intercept) Residual 

StdDev:       0.967    0.337 

 

Fixed effects: Y1 ~ 1 + BeesN + Infection + BeesN:Infection  

                 Value Std.Error DF t-value p-value 

(Intercept)       2.64     0.928 48   2.848  0.0065 

BeesN             0.00     0.000 20  -0.983  0.3374 

Infection1        3.65     1.542 20   2.365  0.0283 

BeesN:Infection1  0.00     0.000 20  -0.679  0.5049 

These two models (with and without the random intercept) are nested, and Zuur 
et al. (2009) compared them using a likelihood ratio test (though the p-value has to 
be corrected because we are testing on the boundary). This test can be carried out 
in the specialised corner. To apply this test in Brodgar, close the graphical and 
numerical output, and click on the “Specialised corner” tab in Figure 5.38. We ob-
tain Figure 5.39. Remove the code from the “Random effects part” of the nested 
model. Your selection should be identical as ours in Figure 5.39. 

 

 
 

Figure 5.39. Specialised corner for the honey bee example. We removed the code 
from the “Random effects part” of the nested model. Ensure that REML estima-
tion is used. 
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The output reads as follows. 

############################################ 

####          NUMERICAL OUTPUT          #### 

############################################ 

================ First submodel ================= 

Linear mixed-effects model fit by REML 

 Data: dataz2  

       AIC      BIC    logLik 

  175.0128 188.3299 -81.50642 

Random effects: 

 Formula: ~1 | Hive 

        (Intercept)  Residual 

StdDev:   0.9666872 0.3373335 

Fixed effects: Y1 ~ 1 + BeesN + Infection + BeesN:Infection  

                     Value Std.Error DF    t-value p-value 

(Intercept)       2.643551 0.9281956 48  2.8480536  0.0065 

BeesN            -0.000012 0.0000127 20 -0.9829792  0.3374 

Infection1        3.646261 1.5420563 20  2.3645445  0.0283 

BeesN:Infection1 -0.000016 0.0000234 20 -0.6790599  0.5049 

 Correlation:  

                 (Intr) BeesN  Infct1 

BeesN            -0.971               

Infection1       -0.602  0.585        

BeesN:Infection1  0.528 -0.543 -0.932 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-2.2650454 -0.4431810  0.1416440  0.5021554  1.6554665  

 

Number of Observations: 72 

Number of Groups: 24  

---------------- ANOVA table for the submodel --------------- 

                numDF denDF   F-value p-value 

(Intercept)         1    48 123.94402  <.0001 

BeesN               1    20   8.64062  0.0081 

Infection           1    20  22.82242  0.0001 

BeesN:Infection     1    20   0.46112  0.5049 

=============== Second submodel ================= 

Generalized least squares fit by REML 

  Model: Y1 ~ 1 + BeesN + Infection + BeesN:Infection  

  Data: dataz2  

       AIC      BIC    logLik 

  251.5938 262.6914 -120.7969 
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Coefficients: 

                     Value Std.Error   t-value p-value 

(Intercept)       2.643551 0.5264205  5.021748  0.0000 

BeesN            -0.000012 0.0000072 -1.733209  0.0876 

Infection1        3.646261 0.8745678  4.169214  0.0001 

BeesN:Infection1 -0.000016 0.0000133 -1.197333  0.2353 

 Correlation:  

                 (Intr) BeesN  Infct1 

BeesN            -0.971               

Infection1       -0.602  0.585        

BeesN:Infection1  0.528 -0.543 -0.932 

Standardized residuals: 

       Min         Q1        Med         Q3        Max  

-2.1491390 -0.6020178 -0.2018275  0.5485022  2.6988650  

Residual standard error: 0.9686788  

Degrees of freedom: 72 total; 68 residual 

---------------- ANOVA table for the submodel --------------- 

Denom. DF: 68  

                numDF  F-value p-value 

(Intercept)         1 385.3355  <.0001 

BeesN               1  26.8632  <.0001 

Infection           1  70.9537  <.0001 

BeesN:Infection     1   1.4336  0.2353 

=============== ANOVA table for the submodels =============== 

      Model df  AIC    BIC   logLik   Test  L.Ratio p-value 

Submodel1 1 6 175.01 188.32 -81.506                         

Submodel2 2 5 251.59 262.69 -120.796 1 vs 2 78.58097 <.0001 

The first part of the output is for the full model, the second part is for the nested 
model, and the last ANOVA table compares them. Note that we are testing on the 
boundary again. To correct the p-value, start R, and type: 

> 0.5 * ((1-pchisq(78.58, 1)) + (1 - pchisq(78.58, 2))) 

and press enter. For other data sets replace the 78.58. All output is explained in 
Chapters 5 and 19 in Zuur et al. (2009). 
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Figure 5.40. Settings to compare a random intercept and slope model versus a ran-
dom intercept model. 

 

Step 7 – 9 of the protocol 

In the second part of the protocol, we look for the optimal fixed structure, using 
the selected random structure from steps 1 – 6. There are three tools to assess the 
significance of explanatory variables: 

1. t-values. 
2. F-statistic using the ANOVA table (this test depends on the order of 

variables!). 
3. The likelihood ratio test. 

The first two are part of the output presented above. The likelihood ratio test 
can be carried out via the “Specialised corner”. Select the explanatory variables 
(and their interaction) in the “Variables” tab and the “Interaction” tab as described 
above. Ensure that ML estimation is selected in the “Settings” tab. Select the de-
sired random effects in the “Random effects” tab. In the specialised corner, click 
both “Get current” buttons. Do not change the random part of the nested model; 
both models should have exactly the same random structure! Drop terms from the 
fixed effects part of the nested model (note that in the current model, you can only 
drop the interaction). If you have a model with multiple 2-way interactions, then 
the “Store” and “Retrieve” buttons may save some time. 
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5.9 GLS to model heterogeneity 

Chapter 4 in Zuur et al. (2009) contains a detailed explanation of GLS. Using a 
squid data set, the weight of the testicles was modelled as a function of the mantel 
length and month. The data were clearly heterogeneous, and various variance 
structures were applied, namely: 

• The varFixed variance 
• The varIdent variance 
• The varPower variance 
• The varExp variance 
• The varConstPower variance 
• The varComb variance 

These variance structures are also discussed in detail in Pinheiro and Bates 
(2000). We do not discuss the underlying theory here. The data can be 
downloaded from www.highstat.com/SquidTestisWeight.xls.  The data were pub-
lished in Smith et al. (2005); see also Section 4.1 in Zuur et al. (2009) for a more 
detailed biological explanation. Note that this is a different squid data set than the 
one used in Chapter 4 of this manual. 

Import the data, select Testisweight as response variable, and DML (length) 
and Month as explanatory variables (ignore or deselect the variable year). 

First apply a linear regression model in which testis weight is modelled as a 
function of DML (continuous), Month (factor), and their interaction. Note that 
there is considerable heterogeneity. Compare your graphical output with Figure 
4.2A in Zuur et al. (2009). The Brodgar clicking process for this is explained in 
Section 5.1 of this manual. 

We are now going to model the heterogeneity in the residuals by using models 
of the form: 

2~ (0, )        1,..,768
i i

N DML iε σ × =  (4.2) 

2~ (0, )        1,..,12
ij j

N jε σ =  (4.4) 

2 2~ (0, | | )
ij ij

N DML
δε σ ×  (4.5) 

22~ (0, | | )      j

ij ij
N DML

δ
ε σ ×  (4.6) 

22var( )      iDML

ij
e

δε σ ×= ×  (4.7) 

22 2
1var( ) ( | | )      

ij ij
DML

δε σ δ= × +  (4.8) 

22 2
1var( ) ( | | )       j

ij j ij
DML

δ
ε σ δ= × +  (4.9) 

22var( )      ijDML

ij j
e

δ
ε σ

×
= ×  (4.10) 
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We used the same equation numbers as in Zuur et al. (2009). The variance de-
fined by Equation (4.2) is the varFixed variance, (4.4) is the varIdent, (4.5) is the 
varPower, (4.6) is also the varPower but with multiple parameters δj, (4.7) is the 
varExp, (4.8) and (4.9) are the varConstPower, and (4.10) is the varComb variance 
structure. All these equations are fully explained and illustrated in Chapter 4 of 
Zuur et al. (2009). 

To implement any of these variance structures in Brodgar, click on the “Uni-
variate“ main menu button, and then the “Mixed modelling, GLS & GAMM” tab, 
so that you get the window in Figure 5.31. Select the GLS option, and click the 
“Go” button. A similar menu appears as for linear regression. Select DML as con-
tinuous explanatory variable, Month as a nominal variable, and add the interaction 
term between these two variables, see also Figure 5.41. 

To select one of the variance structures, click on the “Settings” tab in Figure 
5.41; you get the window in Figure 5.42. The first option “Model fitting method 
by REML or ML” allows the user to select restricted maximum likelihood 
(REML) or maximum likelihood (ML). See Chapters 4 and 5 in Zuur et al. (2009) 
for a detailed discussion when to use which one. The second line, “Allowing for 
heterogeneity”, can be used to model any of the variance structures mentioned 
above. Change the “no” to one of the following options: 

• Fixed weights 
• Constant variance(s) 
• Power of a variance covariate 
• Exponential of a variance covariate 
• Constant plus power of a variance covariate 
• Combination of variance functions 
• Custom 

The “Fixed weights” option implements the fixed variance structure in Equa-
tion (4.2). However, it is not a variance structure that one would use as it is rather 
limited. However, if you want to do this one in Brodgar, change “no” to “Fixed 
weights” and for “Variance structure for heterogeneity”, ensure that the box con-
tains the following text: DML. Do not type the dot; see our snapshot of part of the 
GLS settings menu in Figure 5.43. Note that there is a space (blank) in front of 
DML. Instead of typing it in, you can also use the “Add” button.  
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Figure 5.41. Selection of explanatory variables and interaction for a GLS model 
applied on the testis weight of squid. 
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Figure 5.42. Options for the GLS model. The first row allows one to select REML 
or ML.  

 
 
 

 
 

Figure 5.43. Part of the “Settings” menu for GLS. The selected options ensure that 
a GLS with the varFixed variance structure along DML is used, see also Equation 
(4.2). REML estimation is used as we are looking for the optimal random struc-
ture. 

 
 
 
Other variance structures can easily be implemented by changing the settings in 

Figure 5.43. For example, the “Constant variance(s)” implements the varIdent in 
Equation (4.4). To select this variance structure, change the “no” in Figure 5.42 to 
“Constant variance(s)”. The difficult bit is the code for the “Variance structure for 
heterogeneity”. It has to become: 1|factor(MONTH), see Figure 5.44. The 
“Add” button only allows one to select MONTH as a nominal variable; this adds 
the code as.factor(MONTH). You will have to add the  1|  bit yourself. 
Clicking the “Go” button gives exactly the same results as on page 76 in Zuur et 
al. (2009).  

The varExp and the varPower functions can be run in a similar way as the var-
Fixed; instead of “Fixed weights”, use “Exponential of a variance covariate” or 
“Power of a variance covariate” respectively in Figure 5.43. Ensure that DML is 
selected and not MONTH! To implement the model in Equation (4.6), see our set-
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tings in Figure 5.45. You can either use the “Add” button twice (and typing the | 
symbol in between, or just type it all yourself. Do not make any mistakes! 

To implement the varComb variance structure, change the “no” in Figure 5.42 
to “Combination of variance structures”, and type on the next line:  

varIdent(form =~ 1 | MONTH) , varExp(form =~ DML) 

It is crucial not to make any mistake (R is capital sensitive)! 
 
 
 

 
 

Figure 5.44. Part of the “Settings” menu for GLS. The selected options ensure that 
a GLS with the varIdent variance structure with MONTH is used, see also Equa-
tion (4.4). REML estimation is used as we are looking for the optimal random 
structure. 

 
 
 

 
 
Figure 5.45. Part of the “Settings” menu for GLS. The selected options ensure that 
a GLS with the varPower variance structure with multiple parameters is used, see 
also Equation (4.6). REML estimation is used as we are looking for the optimal 
random structure. 
 
 

 

 
 
Figure 5.46. Part of the “Settings” menu for GLS. The selected options ensure that 
a GLS with the varComb variance structure is used, see also Equation (4.10). 
REML estimation is used as we are looking for the optimal random structure. The 
text on the third line reads:  
        varIdent(form =~ 1 | MONTH) , varExp(form =~ DML) 
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All these GLS models with different variance structures can be compared using 
for example the AIC, see page 81 in Zuur et al. (2009). In this case, the model in 
Equation (4.6) has the lowest AIC. You can now go to steps 6 – 10 of our proto-
col, and look for the optimal fixed structure. This can either be done using the t-
values of the estimated parameters (using REML estimation), the F-statistic (also 
using REML) from the anova table (at the bottom of the output), or use the likeli-
hood ratio statistic. The later one can be estimated in Brodgar using the specialised 
corner, see Figure 5.47. If you click on both “Get current” buttons, Brodgar will 
fill in the fields with your current selected model. If the aim is to apply a likeli-
hood ratio test to test the interaction term, then remove the interaction term from 
the nested model (don’t forget to remove the + symbol), and also change the esti-
mation method from REML to ML in the “Settings” menu in Figure 5.42. Click-
ing on the lower right “Go” button in Figure 5.47 gives the following numerical 
output: 

=============== ANOVA table for the submodels =============== 

       Model df        AIC      BIC    logLik   Test  L.Ratio p-value 

Submodel1     1 37 3276.58 3448.409 -1601.294                         

Submodel2     2 26 3451.54 3572.282 -1699.772 1 vs 2 196.9548  <.0001 

The specialised corner can also be used to compare a model with a certain vari-
ance structure (as defined in the “Settings” menu in Figure 5.42), and a nested 
model with no variance structure. Ensure that REML estimation is used and that 
both models have the same fixed structure (main terms and interaction). 

 
 

 
 
Figure 5.47. The specialised corner. We clicked on both “Get current” buttons. 
From the nested model, remove the interaction term + DML : 

as.factor(MONTH). Ensure that under the “Settings” menu, ML estimation is 
used, and not REML.  
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5.10 GLS example from Zuur et al. (2009) 

In Section 4.2 in Zuur et al. (2009), data from a replicate mesocosm experiment 
were analysed. Biological details and references can be found in Section 4.2.1.  

At the start of the experiment, each container was filled with homogenized 
sediment from mudflats on the Ythan estuary (Scotland, UK). The macrofaunal 
biomass (H. diversicolor) was fixed across the following levels (0, 0.5, 1, 1.5 and 
2 grams), and replicated within each biomass level (n = 3). The response variable 
is the concentration of a particular nutrient. We modelled the concentration data 
from all three nutrients, as a function of one continuous explanatory variable 
(biomass), and two nominal explanatory variables: enrichment (with or without 
algae), and a variable identifying the nutrient with the levels NH4-N, NO3-N and 
PO3-P.  

The data can be downloaded from the file www.highstat.com/Biodiversity.xls. 
The first column contains data; not labels! The response variable is Concentration 
and biomass is a continuous explanatory variable. Treatment (enrichment) and 
Nutrient are the categorical explanatory variables. See the comments in the Excel 
spreadsheet for the interpretation of the values of the categorical variables. 

Apply a data exploration and reproduce Figure 4.7 in Zuur et al. (2009). Also 
apply linear regression to model Concentration as a function of Biomass, Treat-
ment, Nutrient, all 2-way interactions and the 3-way interaction. The window with 
the interactions should read: 

Biomass : as.factor(Treatment) +  

Biomass : as.factor(Nutrient) +  

as.factor(Treatment) : as.factor(Nutrient) +  

Biomass : as.factor(Treatment) : as.factor(Nutrient) 

Don’t forget the select the main terms! As part of the model validation process, 
Brodgar produces Figure 4.8, which clearly shows heterogeneity. In Section 4.2.2, 
Zuur et al. (2009) apply four GLS models: 

• A GLS with no variance structure. 
• A GLS with the varIdent using Nutrient as variance covariate. 
• A GLS with the varIdent using Treatment as variance covariate. 
• A GLS with the varIdent using Nutrient and Treatment as variance covariate. 

All these models can easily be applied in Bodgar. Go to the GLS menu, and se-
lect the same explanatory variables and interactions. First run the model without 
any variance structure (this is just linear regression executed via the GLS menu). 
Do this with the option “no” for “Allowing for heterogeneity” in Figure 5.42. 
Write down the AIC! The other three models are executed with the option “Con-
stant variance(s)” and the following variance structure for heterogeneity: 

• 1|as.factor(Nutrient) 

• 1|as.factor(Treatment)  

• 1|as.factor(Treatment) * as.factor(Nutrient) 
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Just choose one of them, type it in (without the black bullet from Word), run 
the model, and write down the AIC. Ensure that REML estimation is selected! 
You should get the AICs presented on page 89 in Zuur et al. (2009). You can also 
apply a likelihood ratio test to compare the model with a varIdent variance struc-
ture and a nested model without a variance structure. Do this in the specialised 
corner, and ensure that REML is selected and that both models have the same 
fixed structure. From the sub-model, remove the variance structure, see Figure 
5.48 

 

 

 
Figure 5.48. Comparison of two GLS models. The full model contains all main 
terms, 2-way interactions and the 3-way interaction, and the varIdent variance 
structure with Nutrient and Treatment as variance covariates. The nested model is 
identical, except that it does not contain a varIdent variance structure. REML es-
timation is selected under the “Settings” tab. 

 

 
In Subsection 4.2.3 of Zuur et al. (2009), a 10-step protocol is developed, and it 

is applied on the diversity data in subsection 4.2.4. The first part of the protocol 
deals with finding the optimal random structure, and we have already carried out 
this step. In the second part of the protocol, the optimal fixed structure is deter-
mined. We have three options to assess the significance of the terms in the fixed 
part, namely the t-statistics, the F-statistic and likelihood ratio test. The first two 
are part of the output that we already have (assuming REML was used): 

... 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | Treatment * Nutrient  
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 Parameter estimates: 

      0*1       1*1       0*2       1*2       0*3       1*3  

1.0000000 0.5722142 1.4163869 9.4464105 0.4997456 1.2528436  

Coefficients: 

                                 Value Std.Error   t-value p-value 

(Intercept)                   2.879333 0.3214829  8.956411  0.0000 

Biomass                      -0.596000 0.2700997 -2.206593  0.0297 

Treatment1                   -2.772667 0.3703937 -7.485729  0.0000 

Nutrient2                    -2.396306 0.5573954 -4.299113  0.0000 

Nutrient3                    -2.465118 0.3593923 -6.859129  0.0000 

Biomass:Treatment1            0.601000 0.3111929  1.931278  0.0564 

Biomass:Nutrient2             1.196733 0.4683058  2.555453  0.0122 

Biomass:Nutrient3             0.857107 0.3019499  2.838572  0.0055 

Treatment1:Nutrient2         16.022361 3.0930643  5.180093  0.0000 

Treatment1:Nutrient3          4.592260 0.5702849  8.052571  0.0000 

Biomass:Treatment1:Nutrient2  0.846933 2.5986938  0.325907  0.7452 

Biomass:Treatment1:Nutrient3 -0.675893 0.4791352 -1.410653  0.1616 

... 

Residual standard error: 0.7396984  

Degrees of freedom: 108 total; 96 residual 

---------------- ANOVA table for the submodel ----------------- 

Denom. DF: 96  

                           numDF   F-value p-value 

(Intercept)                    1 205.73774  <.0001 

Biomass                        1   1.22179  0.2718 

Treatment                      1  14.62898  0.0002 

Nutrient                       2   1.57754  0.2118 

Biomass:Treatment              1   0.26657  0.6068 

Biomass:Nutrient               2   4.17802  0.0182 

Treatment:Nutrient             2 121.57149  <.0001 

Biomass:Treatment:Nutrient     2   1.09043  0.3402 

Estimated variances, t-values and F-statistics (using sequential testing) are pre-
sented. Note that the F-statistic indicated that the 3-way interaction is not signifi-
cant at the 5% level. The likelihood ratio test required a bit more fiddling. Go to 
the specialised corner, and: 

• Click both “Get current” buttons. 
• Remove the 3-way interaction from the nested model. 
• Set the estimation technique to ML. 
• Ensure that both models have the same random structure. 
• Click the second „Go“ button.  

This should give the following output: 

=============== ANOVA table for the submodels =============== 

        Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Submodel1   1 18 321.0648 369.3432 -142.5324                         

Submodel2   2 16 319.4653 362.3794 -143.7327 1 vs 2 2.400507  0.3011 

Hence, the likelihood ratio test also indicates that the 3-way interaction is not 
significant. Drop it from the full model (in the Interaction menu tab), and compare 
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the new full model (that has three main terms and three 2-way interaction terms) 
to each of the following sub-models: 

1. The model without the Biomass : Treatment interaction. 
2. The model without the Biomass : Nutrient interaction. 
3. The model without the Nutrient : Treatment interaction. 

Drop the term that is the least significant, and continue until everything is sig-
nificant, see pages 93 – 97 in Zuur et al. (2009). You should get the same output. 
The “Store” and “Retrieve” buttons may save some time! 

5.11 GAMM (or GLS) and auto-regressive correlation 

In Chapter 36 of Zuur et al (2007), time series of water birds are analysed using 
dynamic factor analysis, chronological clustering and additive mixed modelling 
(AMM). Here, we reproduce some of the AMM results, and show how to do it in 
Brodgar. 

The data can be downloaded from www.highstat.com/waterbirdislandseries.xls. 
The first column contains data, not labels. The response variable is the column la-
belled Birds, and all other variables are explanatory variables. Apply a square root 
transformation on the birds. As part of a data exploration, try to reproduce Figures 
36.2 and 36.3; both graphs are available from the “Exploration” menu. 

In Section 36.5, various AMMs are applied. Here, we apply the following 
model: 

Birdst = constant + f1(Rainfallt) + f2(Timet) + εt 

where f1() and f2() are smoothing functions and εt is normally distributed noise. 
The index t refers to year. Just like Section 36.5, we impose an auto-regressive 
correlation structure of order 1 (AR1) on the residuals: 

εt = ρεt-1 + γt 

The error term εt is now allowed to be correlated with noise from previous 
years and γt is independently normally distributed noise. R uses the same correla-
tion parameter ρ for all time series, hence we should use: 

εti = ρεt-1,i + γti 

To fit this model in Brodgar, select the GAMM option in Figure 5.31, and click 
the “Go” button. Select the smoothers as for ordinary GAM, see our selection in 
Figure 5.49. The correlation structure can be selected via the “Settings” menu in 
Figure 5.49. 
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Figure 5.49. Selection of smoothers for the water bird data. Two smoothers are se-
lected, one for Year and one for Rainfall. We also added the categorical explana-
tory variable ID. 

 
 
In order to specify the correlation structure, change the “no” for “Allowing for 

correlation” to “Autoregressive process of order 1”. For most regular spaced data 
sets, this correlation structure suffices. We also need to specify the correlation 
structure. If you have only one univariate time series, just type: Year. R then 
knows that the order of the data is specified by the variable Year, and uses this to 
calculate the parameter ρ. The problem here, is that the correlation is inside a par-
ticular time series, hence we have to type:  Year | as.factor(ID). An er-
ror message will occur if you do not use the | as.factor(ID) bit. Note that 
you cannot use the AR1 correlation structure with multiple observations at the 
same time. The numerical output produced by the mgcv package in R is quite 
technical, and not everything is equally important. See Chapters 5 and 6 in Zuur et 
al. (2009) for a detailed explanation of the numerical output of GAMMs. The wa-
ter bird data are also analysed in detail in Chapter 6 (and 7) of Zuur et al. (2009). 

Besides adding a correlation structure, one can also allow for heterogeneity, 
e.g. a different variance per time series using the varIdent variance structure with 
ID as variance covariate. This can also be done in Figure 5.50, see also the GLS 
section in this chapter. 
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Figure 5.50. Adding a residual auto-correlation structure to the AMM. The “no” 
for “Allowing for correlation” is changed into “Autoregressive process of order 
1”. The correlation structure reads as: Year | as.factor(ID). 

 

5.12 GAMM (or GLS) and other correlation structures  

In Chapter 6 of Zuur et al. (2009), regular spaced time series are analysed using 
GLS and additive models. A residual auto-correlation was added to these models 
using either the AR1 or the ARMA structure. In the previous subsection, we 
showed how to add the AR1 residual correlation. The clicking process for a GLS 
is identical, except that you have to do it via the GLS menu. 

To use the ARMA correlation structure for the water bird data, change the “no” 
option for “Allowing for correlation” to “custom”. And on the next line, type 
(without making a mistake): 

corARMA(form=~Year | as.factor(ID) ,p=2,q=0) 

It is important to write the correlation function with capital ARMA. The form 
argument tells R that the correlation is between sequential observations, as defined 
by the variable Yera, within a particular time series ID. If you have only one uni-
variate time series, omit the |as.factor(ID). The p and q specify the number 
of AR and MA parameters respectively. Numerical problems may occur for rela-
tive large values of p and q. Our settings are shown in Figure 5.51. 
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Figure 5.51. Snapshot of part of the “Settings” menu to incorporate a ARMA resi-
dual correlation structure to an additive model. The correlation structure reads as: 
corARMA(form=~Year | as.factor(ID) ,p=2,q=0). 

 
 
 
In Chapter 7 of Zuur et al. (2009) irregular spaced data were used and different 

residual correlation structures were implemented in the GLS and additive models, 
namely: 

• Exponential correlation using the function corExp. 

• Gaussian correlation using the function corGaus. 

• Linear correlation using the function corLin. 

• Rational quadratic correlation using the function corRatio. 

• Spherical correlation using the function corSpher. 

Each of these options implies a specific mathematical model for the correlation 
structure. It is relatively easy to implement any of these correlation structures in 
Brodgar. Just change the “Autoregressive process of order 1” in Figure 5.50 to: 

• Exponential spatial correlation for the corExp structure  
• Gaussian spatial correlation for the corExp structure 
• Linear spatial correlation for the corLin structure 
• Rational spatial correlation for the corRatio structure 
• Speherical spatial correlation for the corSpher structure 

Note that the correlation structure should still be: Year | 

as.factor(ID). Ensure that REML estimation is selected, and compare the 
different correlation structures with, for example, the AIC. The main advantage of 
these correlation structures is that they can be used to model irregular spaced data. 

By default, the spatial correlation structures use a range, but no nugget. If you 
want to use a nugget in the correlation structure, the clicking process in Brodgar is 
slightly more complicated. Suppose you want to use the corExp correlation struc-
ture with a nugget. Click the “Spatial” button in Figure 5.50; you are presented 
with Figure 5.52. All the options look intimidating, but it is not that difficult. The 
first part shows the model definitions; all values are filled in and there is no need 
to change anything. For “Specify spatial variables(s)”, select Year in the first box. 
If for your own data, you have spatial coordinates in the form of northing and east-
ing (or latitude and longitude), then select them here (one in each box). For the 
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water bird data, the correlation is inside a specific time series, and therefore we 
have to select ID for “Grouping factor”. Leave it to “no” if you do not have nested 
data. The last thing we have to do is selecting the type of correlation structure; 
choose the “Exponential spatial correlation”. If you now click on “Apply to model 
and Quit”, Brodgar will use the custom option for the spatial correlation, with the 
following correlation structure: 

corExp(value=numeric(0), form=~ Year | ID, nugget=T, 

       metric="euclidean", fixed=F) 

This is fancy R code for a corExp correlation structure that contains a nugget 
and range. Note that it will estimate the values of the nugget and range. You can 
also set these to a fixed value using the “Range” and “Nugget” entryboxes in Fig-
ure 5.52. Brodgar can even help you choosing these values with the “Get the fol-
lowing values from graph” button. This is an option if numerical (convergence) 
problems occur. 

 
 

 
 

Figure 5.52. Adding a spatial correlation structure with a nugget to a GLS or addi-
tive model. 
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Figure 5.53. Snapshot of the updated “Settings” menu for the additive model with 
a corExp variance structure allowing for a nugget effect. Note that not all code for 
the correlation structure is visible. 

 

5.13 GAMM and random effects 

Roulin and Bersier (2007) analysed the begging behaviour of nestling barn 
owls. They looked how nestlings respond to the presence of the father and of the 
mother. Using microphones inside and a video outside the nests, they sampled 27 
nests, and studied vocal begging behaviour when the parents bring prey. The data 
were used in Chapter 5 of Zuur et al. (2009) to illustrate mixed effects modelling 
and additive mixed effects modelling. The mixed effects model was of the form: 

1 2 3

4 5                   

                   

ij ij ij ij

ij ij ij

i ij

LogNeg SexParent FoodTreatment ArrivalTime

SexParent FoodTreatmentij SexParent ArrivalTime

a

α β β β

β β

ε

= + × + × + × +

× × + × × +

+
 

LogNegij is the log-10 transformed sibling negotiation for observation j at nest 
i. SexParentij and FoodTreatmentij are nominal variables with two levels, and Ar-
rivalTimeij is a continuous variable. The second line contains interactions. The 
term ai is a random intercept for nest, and is assumed to be normally distributed 
with mean 0 and variance d2. The residual εij is assumed to be normally distributed 
with mean 0 and variance σ2.  

A detailed analysis is presented in Chapter of Zuur et al. (2009), and is not re-
peated here. We encourage the reader to reproduce Figures 5.4 – 5.7, and the 10 
steps of the protocol. In this manual, we show how to fit the following additive 
mixed effects model (also applied in Zuur et al., 2009): 

2 ( )
ij ij ij i ij

LogNeg FoodTreatment f ArrivalTime aα β ε= + × + + +  

The term β3 × ArrivalTimeij has been replaced by f(ArrivalTimeij), which is 
now a smoother. 

The data can be found in the file www.highstat.com/Owls.xls. The response 
variable is in the column NegPerChick, and the explanatory variables are Arrival-
Time, SexParent, FoodTreatment and Nest. The last three are categorical. Ignore 
the variables BroodSize and SibblingNegotiation in this analysis (these are used in 
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other Chapters in Zuur et al., 2009). Note that the first column contains data, and 
apply a log(Y+1) transformation on the response variable NegPerChick. 

To implement the additive mixed effects model with nest as a random effect, go 
to the GAMM menu, select ArrivalTime as a smoother, SexParent and Food-
Treatment as nominal explanatory variables, and add the interaction between these 
two nominal variables. To select the random effect nest, click on the “Random ef-
fects” tab, and select nest as nested grouping factor. Clicking the “Go” button 
gives exactly the same output as in Section 5.10 in Zuur et al. (2009). A full ex-
planation of all the numerical output is provided in that section as well. 

5.14 Multinomial logistic regression 

Application of this technique in Brodgar is identical as linear regression or lo-
gistic regression, except that the response variable needs to be a variable with val-
ues 0, 1, 2, 3, etc. Hence, in logistic regression, we use a response variable consist-
ing of 0 and 1, here it contains more levels. An application is given on pages 158 – 
161 in Zuur et al. (2007). The data for this example are available from 
www.highstat.com/DitchData.xls. The response variable is Site (the first column 
contains data!). Note that we ignored (perhaps wrongly) the year and month in-
formation in the analysis. 
 


