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10
Introduction

This is Volume 2 of our book series ‘The World of Zero-Inflated Models’.
In Volume 1, we used datasets for which ordinary generalised linear models
(GLM) and zero-inflated models were sufficient. In this volume, we increase
the complexity of the datasets and models by allowing for a dependency struc-
ture. We do this via random effects in generalised linear mixed effects models
(GLMMs).

Writing this volume took longer than anticipated. Volume 1 was published in
2021, and then the aftermath of the pandemic kicked in. We had to convert
all our courses to online and on-demand formats, which took some time. In
2023, we had to convert everything back to onsite and hybrid courses. We
used the material from this book in various online courses, which turned out
to be an excellent peer-reviewing process. Then there was (and still is) the
delightful chaos caused by the first author’s two young children. They require
a generous amount of pleasant attention. Finally, there is our own writing
ambition. Just when we thought the book was complete, we discovered that the
glmmTMB package had introduced the ordered beta distribution for analysing
proportional data with zeros and ones. Naturally, we felt compelled to include
this exciting development.

We also stumbled upon a paper by van der Veen et al. (2023), extending
the work of Niku et al. (2019b), discussing generalised linear latent variables
(GLLVM). If you sample multiple species at the same site, it is convenient to
convert this into a univariate diversity index and apply a GLM or a GLMM
(with or without zero-inflation components). However, a GLLVM is a mul-
tivariate GLMM that allows for the analysis of the individual species in a
multivariate framework. A GLLVM can be fitted with the gllvm function
from the gllvm package (Niku et al., 2023), which also allows for zero-inflated
Poisson, zero-inflated negative binomial, Tweedie, and ordered beta distri-
butions. Hence, we immediately wrote another 150 pages on GLLVMs and
applied them to zero-inflated data. However, this made the book excessively
long—too large to fit through a letterbox (even a generously sized one).

Therefore, we decided to split the material. This volume covers univariate
GLMMs, and we will simultaneously release Volume 3, focusing on GLLVM.
This was not our original plan, as we intended to include zero-inflated GAMMs
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278 10 Introduction

in Volume 3. These will now appear in Volume 4. Who knew the world of zero-
inflated models could expand faster than our to-do list?

So, what is in this book?

Chapter 11 contains an extensive explanation of linear mixed-effects models.
Originally, we used a dataset of bears and ants, but after discovering that
the covariates only explained 2% of the variation, we decided to completely
rewrite this chapter with a different dataset on painted turtles. At that point,
we had forgotten that the chapter on zero-inflated binomial GLMMs also uses
painted turtle data. So, we hope you like turtles.

In Chapter 12, we first introduce Poisson GLMM using a squirrel dataset and
discuss marginal and conditional predicted values. The chapter also covers
zero-inflated Poisson and generalised Poisson GLMMs.

A zero-inflated Poisson GLMM is applied to a humphead fisheries dataset
in Chapter 13. In Chapter 14, we discuss how to handle nested and crossed
random effects, as well as auto-correlation, using a dataset on zero-inflated
tree hyrax count data.

A detailed explanation of zero-inflated binomial GLMMs is provided in Chap-
ter 15. We use a dataset on painted turtles and also touch upon beta-binomial
models.

In contrast, Chapter 16 utilises beta GLMMs, zero-inflated beta GLMMs,
zero-altered beta GLMMs, and ordered beta GLMMs for the analysis of zero-
inflated caribou data.

Finally, Chapter 17 presents an application of the Tweedie GLMM to zero-
inflated biomass data.

The Preface of this book outlines how to access the R code and data sets used
in this volume.
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Introduction to linear mixed-effects models

In this chapter, we will introduce the basic principles of linear mixed-effects
models using a dataset on the thermal sensitivity of early life traits in the
painted turtle (Chrysemys picta). The dataset includes observations from mul-
tiple hatchlings from the same clutches, suggesting a likely dependence among
observations within each clutch. Ignoring this dependency during statistical
analysis is referred to as pseudoreplication, which is discussed in Section 11.4.

In Section 11.5, we explain the underlying principles of a solution for pseu-
doreplication, namely the linear mixed-effects model. In Section 11.9, we
discuss which variables are typically used as random intercepts, and which
are not. The difference between linear regression models and linear mixed-
effects models is discussed in Section 11.10. Some mathematical background
is presented in Section 11.11, although this section can be skipped upon first
reading. In Section 11.12, we discuss the differences between conditional and
marginal predictions.

11.1 Painted turtles

Species with wide geographic ranges, like the painted turtle (Chrysemys picta),
often face different climate conditions that require them to adapt. Boden-
steiner et al. (2019) studied how early life traits of painted turtles vary with
temperature across seven locations in the US (Idaho, Minnesota, Oregon, Illi-
nois, Nebraska, Kansas, and New Mexico). They collected eggs from 9 to 16
clutches per location, totalling 79 clutches, and transported them to Iowa
State University for a common garden incubation experiment.

Each egg was labelled, weighed, and randomly assigned to one of eight incu-
bation temperature treatments: 26, 27, 27.5, 28, 28.5, 29, 29.5, and 30 degrees
Celsius, matching the temperatures of the original locations. Once a hatchling
emerged, it was weighed, and its midline carapace length, carapace width, and
midline plastron length were measured.

The study focused on five response variables: incubation duration (days),
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280 11 Introduction to linear mixed-effects models

hatchling mass (grams), carapace length (mm), carapace width (mm), and
plastron length (mm). Bodensteiner et al. (2019) modelled each response vari-
able as a function of initial egg mass, temperature, location, and an inter-
action between temperature and location. Due to multiple observations from
the same clutch, mixed-effects models with Clutch as a random intercept were
used. Note that detailed ‘Location’ information is not provided, only the US
states are mentioned. We will use that information instead.

The study found that most traits varied by location, suggesting local adap-
tation and/or maternal effects. This highlights the complex environmental
impacts on traits, helping predict responses to climate change.

 

 

Let us summarise this experiment in
statistical terms. In total, we have
743 hatchlings. For each hatchling,
multiple response variables were
measured. We have three covariates
and one interaction term of interest.
The first statistical complication is
that these 743 hatchlings come from
79 clutches.

For simplicity, let us focus on one
response variable for the moment,
carapace width. The carapace is the
hard, protective upper shell of a tur-
tle, which covers its back. The carapace width can indicate the turtle’s overall
health and growth.

The carapace width of the 1-16 hatchlings from the same clutch may be more
similar than the carapace width of hatchlings from different clutches. Hatch-
lings from the same clutch share the same mother and are genetically linked.
If the carapace width of one hatchling is low, it is likely that the carapace
width of the other hatchlings is also low (and vice versa). This suggests that
the 743 measurements of carapace width are not independent of each other.
We need to include the covariate ‘clutch’ in some form in the model to account
for this dependency.

Please note that these 79 clutches were chosen randomly from a much larger
pool of potential clutches. Our primary interest does not lie in modelling
the relationship between carapace width, initial egg mass, temperature, and
location for these specific clutches alone. Rather, our goal is to extrapolate
this model to apply more broadly to clutches in general.
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11.2 Import the turtle data

We first import the data from the PaintedTurtles.csv csv file using the
read.csv function.

PT <- read.csv(file = "./Data/PaintedTurtles.csv",
header = TRUE,
na.strings = "NA",
stringsAsFactors = TRUE,
dec = ".")

Next, we load all the packages that we will need for this chapter. Just as in
Volume 1, we will primarily use the glmmTMB package (Brooks et al., 2017).
Alternative packages for linear mixed-effects models are nlme (Pinheiro et al.,
2024) and lme4 (Bates et al., 2024), among others.

library(lattice)
library(ggplot2)
library(mgcv)
library(plyr)
library(cowplot)
library(glmmTMB)
library(performance)
library(ggeffects)
library(MASS)
source("./Data/HighstatLibV15.R")

To ensure that variable names are short, and that the variable names in
the R code match those in the formulas, we rename CarapaceWidth to CWt,
CarapaceLength to CLt, and instead of PlastronLength we will use PLt.

PT2 <- plyr::rename(PT,
replace = c("CarapaceWidth" = "CWt",

"CarapaceLength" = "CLt",
"PlastronLength" = "PLt"))

The variable Clutch defines the 72 clutches from which the 1–16 eggs were
taken. It is coded as an integer with values 1 2 2 2 2 … 72 72 72 72. The
variable State represents the state where the eggs were collected.
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