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Preface

Why this book?

In 2009 we published the book Mixed Effects Models and Extensions in Ecol-
ogy with R (Zuur et al., 2009b). One chapter in this book was dedicated
to the analysis of zero-inflated data using the pscl package (Jackman et al.,
2020). This package can be used for the analysis of data sets with an excessive
number of zeros in the response variable using zero-inflated generalised linear
models (GLMs). That chapter has been cited quite often in the literature,
underscoring the niche for zero-inflated models.

In 2012 we published a book dedicated solely to the analysis of zero-inflated
models (Zuur et al., 2012). We implemented zero-inflated GLMs and also
zero-inflated generalised linear mixed-effects models (GLMMs). For the zero-
inflated GLMs we used again the pscl package, which is a pleasant package
to work with. For the zero-inflated GLMMs, we had to use glmmADMB and
WinBUGS as there were not many other options available at the time. Markov
chain Monte Carlo simulation in WinBUGS requires complicated coding and
is based on Bayesian statistics. And in 2012, glmmADMB was quite limited in
what it could do with respect to zero-inflated GLMMs.

We then went on with zero-inflated GLMs and GLMMs in Zuur and Ieno
(2016). Our intention was to write a second edition of the 2012 book, but
we ended up with a (big) piece of text in which not a single line was taken
from the 2012 book. Hence, it became a completely new book. We used JAGS
instead of WinBUGS. JAGS is certainly more user friendly and is also cross-
platform. But JAGS still requires a steep Bayesian learning curve and long
computing time.

Since 2003 we have been teaching about 25 five-day statistics courses per
year, all over the world. Since the very first course, we have been contacted
by many course participants requesting help with statistical models that can
cope with zero inflation and spatial correlation. And some participants even
needed models for zero-inflated data with spatial-temporal correlation and
non-linear covariate effects. We implemented such models in WinBUGS in
Zuur et al. (2015). During this process, we even managed to burn a laptop due
to overheating! We made some progress with these models using JAGS in Zuur

xi
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et al. (2015) and Zuur and Ieno (2016), but computing time for zero-inflated
generalised additive models (GAMs) with spatial correlation was rather long.

The development of R-INLA with spatial GLMs (Rue et al., 2017) was a gift
from heaven. It allowed us to implement zero-inflated GLMs and GAMs with
spatial, and spatial-temporal dependency. We wrote two volumes in which
we applied zero-inflated GLMs and GAMs with spatial, and spatial-temporal
dependency (Zuur et al., 2017, Zuur and Ieno (2018)).

The only problem with R-INLA is that it requires a fair amount of (Bayesian)
knowledge, and the approach is overkill in the event there is no spatial or
spatial-temporal dependency. For this reason, we decided to write the text
that is now in front of you. Our primary aim was to write a book that ex-
plains in simple language how to implement models for zero-inflated data and
also for zero-inflated clustered data. By clustered data we mean multiple ob-
servations from the same site, classroom, patient, animal, etc. This type of
data requires a linear mixed-effects model or a GLMM, but for zero-inflated
data. Between 2018 and 2021 we also noticed that the glmmTMB package (Mag-
nusson et al., 2021) became more stable, more user-friendly, and above all, the
distributions required for zero-inflated models were implemented. This means
that if you have data that require zero-inflated models, and also have de-
pendency, then glmmTMB provides an easy-to-use platform for such models.
We therefore decided to use the glmmTMB package throughout this book. The
package is easy to use and is available for free within the R software.

Acknowledgements
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1
Introduction

1.1 The world of zero-inflated models

The world of zero-inflated models is large and complex. The first layer of
complexity is the type of data. In Volumes 1 to 3 we will analyse count data,
continuous data, proportional data, density data, etc.

The second layer of complexity is that, for each of these data types, we have
multiple options for choosing a statistical distribution. For count data we will
discuss the Poisson, negative binomial (NB), generalised Poisson (GP) and
Conway–Maxwell–Poisson (CMP) distributions. For continuous data we will
apply the Tweedie distribution and the zero-altered Gamma (ZAG) approach.
For proportional data we will use the binomial and the beta distributions.

The third layer of complexity is pseudo-replication. We may have multiple
observations from the same site, animal, person, etc. This brings us within
the world of linear mixed-effects models and generalised linear mixed models
(GLMMs). This is the topic of Volume 2.

The fourth layer of complexity is that some covariates may have a non-linear
effect, which may require generalised additive models (GAMs). If your data
sets requires zero-inflated GAM or zero-inflated generalised additive mixed
models (GAMMs), then Volume 3 of this series will help you analyse your
data. If on top of this, you also have spatial, temporal, or spatial-temporal
dependency, then there is no escape from R-INLA. Note that with spatial
dependency, we assume that you have 50+ spatial locations. And temporal
dependency becomes relevant if you have 15+ measurements over time. Zero-
inflated spatial and spatial-temporal models are discussed in Zuur and Ieno
(2018).

1



2 1 Introduction

1.2 Volumes 1, 2 and 3

The text before you is Volume 1 of The World of Zero-Inflated Models. We will
discuss models for count data and continuous data with an excessive number
of zeros. All models are extensions of generalised linear models (GLMs). In
Volume 2, we will analyse count data, continuous data and proportional data
using GLMMs. Hence, we will extend the models from Volume 1 with ran-
dom intercepts and random slopes. In Volume 3, we will extend the models
from Volumes 1 and 2 towards GAMs and GAMMs. A schematic overview of
Volumes 1 – 3 is presented in Figure 1.1.

Volume 1 can be read as a stand-alone. Volume 2 assumes that you have read
Volume 1, and Volume 3 is a continuation of Volume 2.

 

 

FIGURE 1.1: Outline of Volumes 1, 2 and 3.
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1.3 Outline of this book (Volume 1)

In Chapter 2 we revise data exploration and multiple linear regression using
red knot data. Stable isotope ratios of nitrogen in animal tissues are modelled
as a function of 3 covariates. This chapter serves as a blueprint for all other
chapters in the sense that it shows the general outline of a statistical analysis.

Chapter 3 starts with a revision of the Poisson distribution and the Poisson
GLM for the analysis of count data. We use a small puffin data set. We also
introduce the NB GLM and two relatively unknown, but useful, members
of the family, namely the GP GLM and the CMP GLM. Surprisingly, the
latter two models tend to perform better than the NB GLM in the case of
overdispersion. The latter two can also be used to deal with underdispersion.
Most models are fitted with the glmmTMB package in R. Model validation tools
are explained, and the concept of simulating data from a model (to verify
whether it complies with all assumptions of the model) is introduced. We first
do the simulation steps ourselves, then quickly migrate to the DHARMa package,
which is rapidly gaining popularity.

In Chapter 4 we introduce zero-inflated models for count data, and these
are executed with the glmmTMB package. We start with a basic introduction
using simulated data, and discuss zero-inflated Poisson (ZIP), zero-inflated
NB (ZINB), zero-inflated generalised Poisson (ZIGP) and zero-inflated CMP
(ZICMP) models. We then apply them all on the puffin data set.

In Chapter 5 we analyse data on parasites in Brazilian sandperch. Such data
nearly always bring you within zero-inflation territory. Now that we are fa-
miliar with Poisson, NB, GP, CMP models, and their zero-inflated cousins,
it is time to learn how we can manoeuvre among them. How do we decide to
apply an NB GLM or a ZIP model? In this chapter, we will keep the binary
part of the model simple.

Chapter 6 is about ZIGP models. Data on mistletoe tree infections are used.
The ZIGP models contain covariates in both the count and binary parts of
the model.

Hurdle models for count data are discussed in Chapter 7 using dolphin sighting
data. In a hurdle model we perform 2 analyses. First, the sighting abundances
are converted into absence/presence data, and a Bernoulli GLM is applied.
Then the zero counts are set to NA (or dropped), and a truncated Poisson
(or NB) GLM is applied. In the third step, the two components are combined
to calculate the expected values of the hurdle model. Chapter 7 is relatively
long as it contains many topics that may be relevant: Bernoulli GLM, quasi-
separation, truncated Poisson and NB distributions, and zero-altered Poisson
(ZAP) and zero-altered NB (ZANB) models.



4 1 Introduction

In the last 2 chapters of this volume, we discuss models for the analysis of
continuous data with an excessive number of zeros. Biomass of lobsters are
analysed using Tweedie GLMs in Chapter 8, and a ZAG model is applied on
the same data in Chapter 9. The ZAG is a hurdle model for continuous data.
Our recommendation is to opt for the Tweedie GLM approach.

Figure 1.2 shows a schematic outline of this volume.

 

 

FIGURE 1.2: Outline of Volume 1.
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1.4 E-access to our 2012 book

Although the WinBUGS part of our 2012 book is out of date, the book still 
contains a wealth of information on zero-inflated GLMs using pscl. Readers 
who have purchased Volumes 1, 2 or 3 of The World of Zero-Inflated Mod-
els can request free electronic access to our 2012 book (Zuur et al., 2012). 
If you email Dr. Alain F. Zuur at highstat@highstat.com1, and quote the 
reference ‘deleted in online version’, then you will be given a link to a 
protected pdf file that can be opened with Adobe Digital Edition (ADE). 
Note that no support or refund will be given in the event your computer 
cannot open a protected pdf file in ADE. We will only provide one link per 
person. Please see http://highstat.com/index.php/order-books-or-e-
books for general in-formation on our E-books.

1.5 Decision map

Figure 1.3 shows a decision map for most of the techniques that are used in
this book. You can either have a look at this figure now or first read the book
and then use this figure for the analysis of your own data.

If the response variable consists of counts, then go to step 1. If the counts
can theoretically not obtain the value of zero, and the observed values are
relatively small, then consider zero-truncated models. If the data consist of
zeros and positive counts, then start with a Poisson GLM. In the event of
overdispersion, figure out why there is overdispersion (e.g. the presence of
outliers, non-linear relationships, missing interactions, dependency that has
not been included, etc.). If overdispersion is due to the variance being larger
than the mean, then consider applying the GP, NB or CMP GLMs. Only if
the Poisson GLM cannot cope with the excessive number of zeros, should you
then apply a ZIP GLM. If this model is overdispersed, then figure out why
there is overdispersion (e.g. the presence of outliers, non-linear relationships,
missing interactions, dependency that has not been included, etc.). Only if
overdispersion is due to the variance being larger than the mean, then consider
applying the ZIGP, ZINB or ZICMP GLMs. Never start the analysis of your
data with these models!

If abundance data are analysed, and if abundance is defined as numbers di-
vided by, for example, sampling effort, then use the log of the denominator

1mailto:highstat@highstat.com

http://highstat.com/index.php/order-books-or-e-books
mailto:highstat@highstat.com
highstat
Sticky Note
The reference can be found in the e-book or book.



6 1 Introduction

(sampling effort) as a covariate, or as an offset. See Zuur et al. (2014) for how
to deal with an offset variable in a GLM. Alternatively, use the denominator
itself (and not its log) as a covariate. Note that in all these cases the response
variable is the numbers (nominator in the abundances). If the abundance data
are only available as a continuous variable, then go to option 3.

If the response variable is continuous (e.g. biomass or density), then do not
apply a model for count data. If the data are negative, zero and positive, then
apply a linear regression model. If the data contain zeros and positive data,
then the Tweedie GLM is an option and so is the linear regression model
(provided that it does not have negative fitted values). If the data are strictly
positive, then the Gamma GLM is an option. The inverse Gaussian GLM
(not discussed in this volume) is also an option, and so is the Tweedie GLM.
The Tweedie GLM, as implemented in glmTMB, assumes that theoretically
there can be zeros. If the data contain zeros and continuous data, then the
Tweedie GLM is a good option. The ZAG GLM can also be applied, provided
that a fair number of observations are absent, and also present. The reason
for this is that the ZAG GLM consists of multiple models, and one of the
models is a Bernoulli GLM that is applied on absence/presence data. Such
a model is likely to give numerical problems (quasi-separation issues) when
90 observations equal 0, and 10 observations have values larger than 0. The
zero-altered log-normal model is an alternative to the ZAG model, but it is
not discussed in this volume.

If your data are proportional or binomial, then see Volume 2, in which the
(zero-inflated) binomial and beta GLMMs are introduced. If you have repeated
measurements (hierarchical data, clustered data, short time series), then see
Volume 2, in which we discuss (zero-inflated) GLMMs. If you have spatial,
temporal or spatial-temporal dependency, then see our two INLA volumes
(Zuur et al., 2017; Zuur and Ieno, 2018). If you have non-linear relationships,
zero-inflation problems and repeated measurements, then see Volume 3, in
which we use GAMs and GAMMs for such data.
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FIGURE 1.3: Decision map. A high-resolution colour version is available on
the website for this book.





2
Linear regression applied on red knot data

In this chapter we will review data exploration and multiple linear regres-
sion. The reason for doing this is that the analyses that will be applied in
later chapters will follow similar steps. It is not our intention to explain data
exploration and multiple linear regression in detail. For an introduction to
data exploration we refer the reader to Zuur et al. (2010) or Ieno and Zuur
(2015). Linear regression is explained in detail in Quinn and Keough (2002),
Montgomery et al. (2012) or Zuur et al. (2007).

We assume familiarity with basic R coding. Even if you have not worked with
R before, it is relatively easy to learn R while working through the chapters
of this book. For an introduction to R, see Dalgaard (2008) or Zuur et al.
(2009a).

2.1 Red knot

The red knot Calidris canutus canutus experienced globally unrivaled warming
rates at its high-Arctic breeding grounds and produced smaller offspring with
shorter bills during summers with early snow melt (van Gils et al., 2016).

 

 

As a result, the red knot eats fewer deeply
buried bivalve prey and more shallowly
buried seagrass rhizomes at their winter-
ing grounds in the tropics. This bill length–
dependent diet shift may be explained by
the depth distribution of Loripes lucinalis,
the preferred energy-content prey that only
long-billed knots incorporate in their diet.
The authors suggest that seasonal migrants
experience reduced fitness and therefore
lower survival rates due to a changing cli-
mate.

9
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In this chapter, we will use part of the data that was analysed in van Gils et al.
(2016). Red knots were caught using mist-nets. Upon capture, each bird was
aged, body measurements were made and a small blood sample was taken.
The birds were ringed before release.

The analysis of stable isotope ratios of carbon and nitrogen in animal tissues
has become accepted and commonly applied in ecological studies, thanks to
its simplicity and the fact that isotope ratios reflect diet over a relatively
long time. The technique is widely used in the study of the feeding ecology of
higher oceanic predators such as marine mammals, large pelagic fish, turtles
and birds. We will analyse the nitrogen isotope ratio values d15N that were
taken from the blood samples of the birds.

2.2 Importing the data

We first import the data with the read.table function. We assume that the
data are in the directory Data inside the working directory (use setwd to
set the working directory). Character strings are automatically imported as
categorical variables (stringsAsFactors = TRUE), and NA is used for missing
values. The text file uses points for decimal separation (dec = ".").

RK <- read.table("./Data/RedKnots.txt",
dec = ".",
na.strings = "NA",
stringsAsFactors = TRUE,
header = TRUE)

We have 474 observations in the RK object. Each of these observations contains
measurements for 8 variables from a specific bird. The following variables are
available in the RK object.

names(RK)

## [1] "Ring" "Age" "d13C" "d15N" "Year" "Wing"
## [7] "Bill" "Tarsus"

The response variable is d15N. The variables Wing, Bill and Tarsus are mor-
phometric variables and are measured on the continuous scale. Age is a cate-
gorical variable with values adult and juvenile. The variable Ring identifies
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the bird. Finally, Year is an integer, but because we only have data from 2
years, we will treat it as a categorical covariate.

We load a series of packages and also our support file HighstatLibV13.R.
Some of these packages are not part of the base installation of R so they must
be installed manually. The ggplot2 is such a package. It can be installed with
the install.packages("ggplot2", dependencies = TRUE) command.

library(lattice) #Multipanel graphs
library(mgcv) #Smoothing
library(ggplot2) #Multipanel graphs
library(plyr) #Data manipulation
library(GGally) #Multipanel graphs
source("./Data/HighstatLibV13.R") #Our support file

2.3 Data exploration

We will apply data exploration following the protocol presented in Zuur et al.
(2010). The aim of data exploration is to detect potential outliers, determine
collinearity (i.e. relationships between covariates), identify potential pseudo-
replication problems (e.g. spatial correlation, temporal correlation, repeated
measurements from the same station), determine the number of zeros in the
response variable and try to identify which follow-up analysis should be ap-
plied (i.e. what type of models should be applied). Data exploration should
not be used to formulate hypotheses, but merely to check the quality of the
data, get a feeling for the data and determine the appropriate strategy for the
data analysis.

2.3.1 Missing values

We use the following command to determine if there are missing values in the
data.

colSums(is.na(RK))

## Ring Age d13C d15N Year Wing Bill Tarsus
## 0 0 0 0 0 34 0 0
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Note that the covariate Wing has 34 missing values. We can do one of two
things. The first option is to remove the 34 missing values from the variable
Wing, but this will also delete 34 rows from the data set. The second option is
to wait until we investigate which covariates are collinear with one another.
Perhaps Wing is collinear with another covariate that does not have any miss-
ing values. This approach may avoid deleting 34 observations from the object
RK. We will go with the second option as it is likely that collinearity will be
an issue here.

2.3.2 Outliers

We first focus on the presence of extremely large and extremely small values
as such observations may dominate the statistical analyses. Common tools
for this are boxplots and Cleveland dotplots. The advantage of boxplots is
that most people know how to interpret them, but at times they can also
be misleading. Cleveland dotplots are less known, but, in our opinion, more
useful. In this section, we will use multi-panel Cleveland dotplots; see Figure
2.1. In a Cleveland dotplot the value of a variable is plotted along the x-axis,
and the sequence number (i.e. the row number as imported from the data
file) is plotted along the y-axis. The main purpose of this graph is to see
whether there are any points sticking out on the right-hand side (these are
extremely large values) or on the left-hand side (these are extremely small
values). ‘Sticking out’ is defined as ‘being different from the majority of the
observations’. If such points are present, then we first need to check whether
these values are typing errors. If this is not the case, then a data transformation
may be considered (though this should be avoided if possible).

The dotplots in Figure 2.1 indicate that there is one bird with a relatively
large d15N value. It is an option to remove this bird from the analysis, but
we decided to retain it.

We used the function MyDotplot from our support file HighstatLibV13.R to
create the Cleveland dotplots.

MyVar <- c("d15N", "Wing", "Bill", "Tarsus", "Year")
Mydotplot(RK[,MyVar])
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FIGURE 2.1: Cleveland dotplots of all continuous covariates and the re-
sponse variable. The 𝑥-axis shows the value of a variable, and the 𝑦-axis shows
the row number from the data file. Of prime interest is whether there are any
odd data values.

2.3.3 Categorical covariates

There are two categorical covariates in the data set. In this subsection we
briefly discuss both of them. We will start with Year. We have data from 2
years. The numbers below show the sampled number of red knots in each year
and indicate that the data are reasonably well balanced with respect to this
covariate.

RK$fYear <- factor(RK$Year)
table(RK$fYear)

##
## 2004 2013
## 207 267

The covariate Age also has 2 levels: adult and juvenile. The numbers below
indicate that we have more adults than juveniles. We decided to set the ju-
veniles as the baseline level as it produces results that are easier to interpret
from a biological point of view.
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RK$fAge <- factor(RK$Age, levels = c("juvenile", "adult" ))
table(RK$fAge)

##
## juvenile adult
## 112 362

Applying the table function on both categorical covariates shows how many
observations per age and year combination we have. Note that the data are
slightly unbalanced with this respect. This is important information because
we will use an interaction between age and year in the model. A rule of thumb
is to have about 15–20 observations per regression parameter. The smallest
group contains 42 observations, hence we can still apply a model with an
interaction term between fAge and fYear.

table(RK$fAge, RK$fYear)

##
## 2004 2013
## juvenile 70 42
## adult 137 225

Finally, we want to know how many observations we have per bird. If we
have more than one, then this indicates pseudoreplication, and a mixed-effects
modelling approach would be the starting point. The numerical output of
table(RK$Ring) is not presented here, but it shows that every observation is
from a different bird. Formulated differently, we indeed have one observation
per bird.

2.3.4 Collinearity

Collinearity is defined as relationships between covariates. We deliberately
did not use the phrase ‘correlation between covariates’ as any type of rela-
tionship (also non-linear) is collinearity (and this will not be picked up by
a correlation coefficient). In a linear regression model, collinearity increases
the standard errors of the regression parameters, and this inflates 𝑝-values.
Formulated differently, correlation between covariates makes the parameters
less significant. There are various tools to identify collinearity, e.g. Pearson
correlation coefficients, scatterplots, variance inflation factors and principal
component analysis biplots. See Zuur et al. (2010) for a detailed discussion
and examples.
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To investigate collinearity between the 3 continuous and 2 categorical co-
variates, we plot multipanel scatterplots and conditional boxplots using the
ggpairs from the GGally package (Schloerke et al., 2021); see Figure 2.2. It
shows scatterplots, Pearson correlation coefficients, conditional boxplots, his-
tograms, density curves and even the information from the table function
applied on 2 factors. That is a lot of information. The ggpairs help file shows
how to omit some of these graphs. For a small set of covariates, like here, this
function produces an interesting graph. For a larger number of covariates it
may not be that useful.
The scatterplots and correlation coefficients indicate that the covariates Wing,
Bill and Tarsus are slightly collinear. We do not feel comfortable using these
3 morphometric variables in the same model. Note that Age is also collinear
with Wing. The paper uses Bill as the main morphometric variable.

MyVar2 <- c("Wing", "Bill", "Tarsus", "Age", "fYear")
ggpairs(RK[,MyVar2])
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FIGURE 2.2: Pairplot and conditional boxplots of the covariates.

2.3.5 Relationships

In this subsection we will plot the response variable d15N versus each covariate
and add a linear regression line. We will use the ggplot2 function (Wickham
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et al., 2021) to plot the multipanel scatterplots; see Figure 2.3. In 2013, the
adults seem to have lower d15N values, and the slope for the adults seems
to be more negative. We will need a statistical model to see whether these
differences are important.

p <- ggplot(data = RK, aes(y = d15N, x = Bill))
p <- p + geom_point()
p <- p + geom_smooth(method = "lm", se = FALSE,

aes(group = Age, col = Age))
p <- p + xlab("Bill length") + ylab("d15N")
p <- p + theme(text = element_text(size=15))
p <- p + facet_grid(.~fYear)
p
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FIGURE 2.3: Multiple scatterplots showing the relationship between d15N
and bill length for each Year and Age level.

To better visualise the interaction between the factors we execute the following
ggplot code. The graph in Figure 2.4 emphasises that d15N for adults in 2013
is lower.

p <- ggplot(data = RK, aes(y = d15N, x = fAge))
p <- p + geom_boxplot()
p <- p + xlab("Age") + ylab("d15N")
p <- p + theme(text = element_text(size=15))
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p <- p + facet_grid(.~fYear)
p
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FIGURE 2.4: Boxplot of d15N conditional on Year and Age.

2.4 Model formulation

The response variable d15N is defined on the continuous scale, and we will
therefore start with a normal distribution. We write this distributional as-
sumption as follows.

d15N𝑖 ∼ Normal(𝜇𝑖, 𝜎2) (2.1)

The d15N𝑖 is the isotope composition value from bird 𝑖, and we assume that
it is normally distributed with the mean 𝜇𝑖 and variance 𝜎2. The mean 𝜇𝑖 is
modelled as a function of covariates. We write this as follows.

𝜇𝑖 = Covariates𝑖 (2.2)

For the ‘Covariates’ part, we will use all main terms, 2-way interactions and
the 3-way interaction. We actually should have formulated the underlying
biological question first, before showing this model. Let us do that now. We
want to know whether the relationship between d15N and Bill size differs
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between the 2 years and 2 age classes. This question guides us to the model
with the 3-way interaction term. Because the 3-way interaction is included,
we must include all 2-way interactions and also the main terms.

2.5 Applying the multiple linear regression model

2.5.1 Executing the model in R

We apply the multiple linear regression model in R with the lm function. The
notation Bill * fYear * fAge in the lm function below means that all main
terms, all 2-way interactions and the 3-way interaction are included.

M1 <- lm(d15N ~ Bill * fYear * fAge, data = RK)
options(width = 70, show.signif.stars = FALSE)
print(summary(M1), digits = 2)

##
## Call:
## lm(formula = d15N ~ Bill * fYear * fAge, data = RK)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.73 -0.54 0.07 0.55 7.69
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.090 2.315 6.5 2e-10
## Bill -0.153 0.068 -2.3 0.02
## fYear2013 -2.819 3.544 -0.8 0.43
## fAgeadult -1.426 2.828 -0.5 0.61
## Bill:fYear2013 0.051 0.102 0.5 0.61
## Bill:fAgeadult 0.038 0.082 0.5 0.65
## fYear2013:fAgeadult 3.657 4.139 0.9 0.38
## Bill:fYear2013:fAgeadult -0.138 0.118 -1.2 0.24
##
## Residual standard error: 1 on 466 degrees of freedom
## Multiple R-squared: 0.55, Adjusted R-squared: 0.55
## F-statistic: 82 on 7 and 466 DF, p-value: <2e-16
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Note that the 3-way interaction is not significant at the 5% level. Dropping co-
variates or interaction terms because they are not significant is a controversial
topic. The main options to proceed are as follows.

1. Leave the model as it is. We have answered the biological question.
2. Apply model selection using the Akaike Information criterion (AIC) or

any of its cousins.
3. Define 10–15 models a priori and apply the information-theoretic ap-

proach.
4. Use 𝑝-values to drop non-significant terms (one at a time).
5. Only apply model selection on the interaction terms, but keep all main

terms in the model (even if they are not significant).

Other options exists, e.g. cross-validation, least absolute shrinkage and selec-
tion operator (LASSO), ridge regression, etc. We will not discuss the pros and
cons of these approaches in detail as many books and scientific publications
cover these topics in great detail; see, for example, Burnham and Anderson
(2002) or Harrison et al. (2018), and a very large number of publications in
between. All that we mention here is that option 1 is a sensible approach,
provided that there is no strong collinearity between the covariates and if the
model does not contain too many interactions (otherwise consider option 5).
Option 2 is heavily criticised by many scientists, yet the majority of scien-
tific publications use it. Option 3 is the ‘must-do’ approach required by many
journals. Option 4 is deemed by many to be the worst possible thing that you
can do. We will keep it simple here, and apply backwards selection in a mo-
ment. But before applying backwards selection, we first investigate whether
the model complies with all assumptions. This process is called model valida-
tion.

2.5.2 Model validation

As a first step in this process we obtain the (standardised) residuals and fitted
values.

E1 <- rstandard(M1)
F1 <- fitted(M1)

One of the underlying assumptions of the linear regression model is homo-
geneity of variance. We can verify this by plotting the residuals versus the
fitted values; see Figure 2.5. Homogeneity of variance implies that the vertical
variation in the residuals should be similar along the horizontal axis. In this
case there is no strong reason to question this assumption.
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plot(x = F1, y = E1, xlab = "Fitted values", ylab = "Residuals")
abline(h = 0, lty = 2)
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FIGURE 2.5: Residuals plotted versus fitted values for the multiple linear
regression model.

Residuals are assumed to be normal, identical and independently distributed
with mean 0 and variance 𝜎2. In simple language this means that the residuals
should not contain any information. One way to verify this is to plot the
residuals versus each covariate in the model, and also versus each covariate
not in the model. If any of these graphs show a clear non-linear (or linear)
pattern, then we are violating the independence assumption. If this happens,
then we need to improve the model. If we do not do this, then the estimated
parameters may be biased. If the graph with residuals versus a covariate in the
model shows a non-linear pattern, then extending the model by allowing for
non-linear covariate effects is an option. If the graph with residuals versus a
covariate that is not in the model shows a pattern, then that covariate should
be included in the model.

The graphs in Figure 2.6 do not indicate any serious problems. To aid the
visual interpretation, we also added a smoothing curve. Note that 0 is always
within the 95% confidence intervals of these smoothers, indicating that there
are no strong residual patterns present. If you are not sure, or do not feel
confident about visually judging these graphs, then it is also an option to
model the residuals with a generalised additive model (GAM) in which one of
these covariates is used as a smoother. If the GAM indicates that the smoother
is non-linear, then it is time to improve the multiple linear regression model.



2.5 Applying the multiple linear regression model 21

 

Bill Tarsus Wing

30 33 36 39 30 32 34 36155 160 165 170 175 180

-5

0

5

Covariates

R
e
s
id
u
a
ls

 

FIGURE 2.6: Multipanel scatterplots showing residuals versus all the con-
tinuous covariates that are in, and not in, the model. A LOESS smoother was
added to aid visual interpretation.

To create this graph we first put the standardised residuals inside the RK data
frame, and we then use our MyMultipanel.ggp2 function, which is in our
support file.

MyVar <- c("Bill", "Tarsus", "Wing")
RK$E1 <- E1
MyMultipanel.ggp2(Z = RK,

varx = MyVar,
vary = "E1",
ylab = "Residuals",
addSmoother = TRUE,
addRegressionLine = FALSE,
addHorizontalLine = TRUE)

We also need to plot the residuals versus the categorical covariates, age and
year. These graphs are not presented here, but there are no clear patterns
(e.g. heterogeneity).

2.5.3 Model selection

As discussed in Subsection 2.5.1 we will apply classical backwards model se-
lection using the AIC. The advantage of a backwards selection, as opposed
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to a forward selection, is that we start with a saturated model and gradu-
ally decrease the complexity. This procedure is implemented in R in the step
function, and it is executed with the following function.

step(M1)

The full results are not shown here, but they indicate that a model with all
main terms and the interaction between age and year is the best model, as
judged by the AIC. We execute this model below.

M2 <- lm(d15N ~ Bill + fYear + fAge + fYear:fAge, data = RK)

At this stage model validation should be applied again. Because only non-
important components were removed from the model, we expect to find similar
results as in Subsection 2.5.2. We leave it as an exercise for the reader to verify
this.

2.6 Model interpretation

In Subsection 2.5.2 we applied model validation on the full model. We did not
find any clear reason to reject the model. In Subsection 2.5.3 classical model
selection was applied, and we ended up with a model that contains all main
terms and an interaction between age and year. In this subsection we will
provide an interpretation of this model.

We start with the numerical output.

print(summary(M2), digits = 2)

##
## Call:
## lm(formula = d15N ~ Bill + fYear + fAge + fYear:fAge, data = RK)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.50 -0.54 0.08 0.55 7.68
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.191 0.882 17.2 <2e-16
## Bill -0.156 0.026 -6.1 2e-09
## fYear2013 -1.001 0.203 -4.9 1e-06
## fAgeadult -0.079 0.156 -0.5 0.6
## fYear2013:fAgeadult -1.228 0.233 -5.3 2e-07
##
## Residual standard error: 1 on 469 degrees of freedom
## Multiple R-squared: 0.55, Adjusted R-squared: 0.55
## F-statistic: 1.4e+02 on 4 and 469 DF, p-value: <2e-16

The results indicate that we have a negative bill length effect, and a strong
interaction between age and year. Both are significant at the 5% level. The
model explains 55% of the total variation in d15N. The data are from 2 years
and 2 age classes. This means that we can write 4 equations for the expected
values 𝜇𝑖; see Equation (2.3).

𝜇𝑖 = 15.19 − 0.16 × Bill𝑖 for 2004 and juvenile
𝜇𝑖 = 15.19 − 0.16 × Bill𝑖 − 0.08 for 2004 and adult
𝜇𝑖 = 15.19 − 0.16 × Bill𝑖 − 1.00 for 2013 and juvenile
𝜇𝑖 = 15.19 − 0.16 × Bill𝑖 − 1.00 − 0.08 − 1.22 for 2013 and adult

(2.3)

In addition to presenting a table with the estimated values, standard errors,
𝑡-values and 𝑝-values in a paper or report, we strongly suggest also including
a graphical presentation of the fitted model. We will now show how to do this.

We need to create covariate values for which we can sketch the fitted values.
The model contains bill length, year and age; hence we need to specify a data
frame that contains bill length, year and age values. We will call this data
frame MyData. We will use the predict function to obtain predicted values
and standard errors for these covariate values. To avoid doing predictions for
bill length values that are not observed in a certain year and age level, we use
the ddply function from the plyr package (Wickham, 2020). It takes the data
in RK, which is then broken up into pieces according to the levels of fYear and
fAge. In each piece the summarise function from the same package is applied;
it takes the minimum and maximum value of Bill in each piece and creates
25 values between these 2 extremes.

MyData <- ddply(RK,
.(fYear, fAge), summarise,
Bill = seq(from = min(Bill),
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to = max(Bill),
length = 25))

The same results can be obtained with the dplyr package, which is the
successor of the plyr package. However, this requires the use of ‘pipes’,
and we find these slightly confusing to work with. For details, see https:
//blog.rstudio.com/2014/01/17/introducing-dplyr/.

We now have 100 (= 25 × 2 × 2) artificial covariate values for which we want
to make predictions. We can use the predict function for this.

P2 <- predict(M2, newdata = MyData, se = TRUE)

The object P2 contains predicted d15N values for the covariate values in
MyData. For plotting purposes, it is easier to have these predicted values inside
the MyData object. The R code below does that. We also calculate the 95%
confidence intervals for the fitted values and add these to MyData.

MyData$mu <- P2$fit #Predicted values
MyData$selow <- P2$fit - 1.96 * P2$se.fit #Lower bound
MyData$seup <- P2$fit + 1.96 * P2$se.fit #Upper bound
head(MyData)

## fYear fAge Bill mu selow seup
## 1 2004 juvenile 29.900 10.53261 10.212053 10.85317
## 2 2004 juvenile 30.275 10.47419 10.165759 10.78262
## 3 2004 juvenile 30.650 10.41577 10.118768 10.71277
## 4 2004 juvenile 31.025 10.35735 10.070996 10.64370
## 5 2004 juvenile 31.400 10.29893 10.022352 10.57551
## 6 2004 juvenile 31.775 10.24051 9.972741 10.50828

The MyData data frame now contains a set of covariate values for bill length,
year and age, and matching predicted values and the boundaries of the 95%
confidence intervals. We make a ggplot2 graph with the observed bill length,
year, age and d15N data, and superimpose the predicted values; see Figure
2.7. The R code for this graph is given below. To obtain the 4 lines in one
graph we define a new variable YearAge that defines the 4 combinations of
year and age class, and we use this for colour and groups.

https://blog.rstudio.com/2014/01/17/introducing-dplyr/
https://blog.rstudio.com/2014/01/17/introducing-dplyr/
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RK$YearAge <- factor(paste(RK$Year, RK$Age, sep = " "))
MyData$YearAge <- factor(paste(MyData$fYear,

MyData$fAge, sep = " "))
p <- ggplot()
p <- p + geom_point(data = RK,

aes(y = d15N, x = Bill, col = YearAge),
shape = 16,
size = 1)

p <- p + xlab("Bill length") + ylab("d15N")
p <- p + theme(text = element_text(size=15)) + theme_bw()
p <- p + geom_line(data = MyData,

aes(x = Bill , y = mu,
group = YearAge, col = YearAge))

p <- p + geom_ribbon(data = MyData,
aes(x = Bill,

ymax = seup,
ymin = selow,
group = YearAge,
fill = YearAge),

alpha = 0.5)
p

 

4

8

12

16

30 33 36 39

Bill length

d
1

5
N

YearAge

2004 adult

2004 juvenile

2013 adult

2013 juvenile

 

FIGURE 2.7: Results of the linear regression model. The lines represent the
fitted values, and the shaded areas around these lines represent 95% confidence
intervals.
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The predicted values in the figure indicate that d15N decreases for larger Bill
size. Adults in 2013 had the lowest d15N values. In 2004, both adults and
juveniles had higher d15N values than in 2014.
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