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The problem I consider here is whether binary models such as logistic and probit regression can 

be overdispersed.  Probably, the better question is whether binary (0,1) response models can be 

extra-dispersed?  Extra-dispersion provides for both over and under-dispersion. I shall argue that 

the problem is based on two issues, 1) the meaning of overdispersion, and 2) the meaning of a 

binary model. I will focus on overdispersion rather than extra-dispersion since overdispersed 

models are much more common than under-dispersed ones.  

      I recall when I first read that binary response models cannot be overdispersed that I 

wondered how that could be the case. It seemed to me that I was modeling binary response data 

that was clustered or correlated in a variety of ways, and that this added variability, or dispersion, 

to the data. I researched the literature on the topic, and found that statisticians had differing 

views on the subject. There are a number of statisticians who do talk about overdispersion in 

logistic models, and others who claim that only grouped logistic models, or binomial logistic 

models, can be overdispersed.   

    Binary logistic regression is based on the canonical or natural form of the Bernoulli 

probability distribution function (PDF), which is a subset of the binomial PDF. Both the 

Bernoulli and binomial PDFs are members of the one parameter exponential family of 

distributions, which underlie the statistical method known as generalized linear models, or GLM. 

Binary logistic regression is based on the Bernoulli distribution; grouped logistic regression is 

based on the binomial PDF.  

   Let me give an overview regarding the relationship of binary to grouped data. This will help 

make what follows more understandable. Consider an example model consisting 10 

observations, a response variable, y, and two predictors, x1 and x2. The data appears as: 
 

 

      TABLE A   
      ---------------------------- 

                         covariate            

              y   x1  x2  pattern 

       --------------------------- 

       1:     1   1   0      1 

       2:     1   1   1      2 

       3:     0   1   0      1 

       4:     1   0   0      3 

       5:     0   0   1      4 

       6:     1   1   0      1 

       7:     1   0   1      4 

       8:     0   0   0      3 

       9:     0   1   0      1 

      10:     1   1   0      1 

      ---------------------------- 

 

I combine the covariate patterns to more easily see their relationships.  
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         TABLE B 
     ---------------------------- 

                        covariate 

              y  x1  x2  pattern 

     ---------------------------- 

       1:     1   1   0     1 

       3:     0   1   0     1 

       6:     1   1   0     1 

       9:     0   1   0     1 

      10:     1   1   0     1 

       2:     1   1   1     2 

       4:     1   0   0     3 

       8:     0   0   0     3 

       5:     0   0   1     4 

       7:     1   0   1     4 

     ---------------------------- 

 

x1 and x2 must have the same values for each observation in a covariate pattern. Therefore the 

first five cases in Table B share the same pattern of 1-0. The value of y indicates the count of 

successes, or 1's, for a given covariate pattern.  Restructuring the above gives: 

 

                                     TABLE C 
                   -------------------    

                   y   cases   x1   x2 

                   ------------------- 

                   3      5     1    0 

                   1      1     1    1 

                   1      2     0    0 

                   1      2     0    1 

                   ------------------- 

 

     Again, cases is the number of observations having the same pattern of covariates. y is the 

number of successes (1's) having the same covariate pattern. As I will emphasize later, the 

information contained in the observation-based data in Table A is exactly the same as the data in 

the above grouped data in Table C. An analyst could model the data in Table A using a binary 

logistic regression, and the data in Table C with a grouped logistic model.  

     One of the requirements of a probability distribution is that its elements are independent of 

one another. This is the case for Bernoulli and binomial PDFs underlying logistic regression as 

well. The respective probability distributions are given as 

 

BINOMIAL PDF 

           
 
    

        
    

 

   

 

BERNOULLI PDF 

          
        

    

 

   

 

Normally the product sign is dropped from the above equations as being understood, since it is 

common to all PDFs. I displayed it to provide complete formulae. Note that the Bernoulli PDF is 
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the same as the binomial PDF except that the value or n (cases) is 1 for the Bernoulli PDF. As 

such the leading combination term in the binomial PDF is not needed. The value reduces to 1.  

     Most analysts think of dispersion as variability. Greater dispersion in the data means greater 

variability. There are a variety of causes for extra variability, or dispersion, in this type of data. 

The foremost reason or cause of dispersion occurs when the data are clustered, e.g. when 

measuring the behavior of dogs from different litters, or even different breeds if we lump all 

dogs together as part of a larger study of species. Domestic dogs are of the same species, but 

with a lot of variability in physical appearance and behavioral propensities. If we are modeling 

clustered data as a binary logistic regression, there is in fact dispersion, or variability, in the data. 

The data is not independent, as required by the Bernoulli PDF. That's the key to this problem. 

For a true binary logistic model, there is no overdispersion, or under-dispersion. Each 

observation is independent of one another. But what happens when we model a logistic 

regression where the data is clustered, ie. where the observations are not independent? Some 

analysts then claim as a consequence  that the model is not a true Bernoulli model - it’s a quasi-

likelihood model. It's clear that such a model is not a binary model with independent 

observations. However, 99.9% of most analysts will say that they are in fact estimating a logistic 

model - albeit one that may violate the distributional assumptions of the model, but it's still a 

logistic regression. You see the problem here? If the data is not independent, and hence is extra-

dispersed -- it's not a true Bernoulli model. One may adjust the model standard errors (SE's) by 

scaling, or by using a robust or sandwich variance estimator. I have argued in both Hilbe (2011) 

and Hilbe (2013) that one should use robust SEs by default when modeling binomial and count 

models since few models are equi-dispersed, ie. have no variability not consistent with their 

underlying PDFs. If the data is equi-dispersed, then the robust SE's reduce to the original model 

SE's.   

     I should like to provide evidence demonstrating that it makes sense to say that binary logistic 

models can be overdispersed. I have used a larger version of this model in Hilbe (2009). The 

heartxsmall data has 500 observations and consists of heart attack patient data from the 

Canadian National Registry for Cardiovascular Disease, FASTRAK. The model variables are: 
 

  Response  :  death 1=died within 48 hours of admission; 0 = not die 
  Predictors:  anterior  1=anterior site infarction; 0 = other site 
               killip    1=normal  2=angina  3=blockage  4= MI                 
 

Each higher Killip level is a higher risk for death. Anterior is a risk factor for death as well.  I use 

a logistic regression model of  death on anterior and killip level with killip1 as the reference 

level. Only the table of estimates is displayed for the binary logistic model. The top model is a 

standard model; the second is modeled with robust or sandwich standard errors.  If the values of 

the model and robust standard errors differ much, this indicates correlation in the data, or extra-

disperson. If the model is extra-dispersed, some statisticians will label the second model as 

quasi-likelihood, not  true logistic model.  

   I am using the Stata glm command to estimate the models, with the option nolog being used to 

inhibit the display of the iteration log, and nohead used to inhibit the display of the header 

statistics.  
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. glm death anterior i.killip , fam(bin) nolog nohead 

 

------------------------------------------------------------------------------ 

             |                 OIM 

       death |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   .9805594   .5557307     1.76   0.078    -.1086529    2.069772 

             | 

      killip | 

          2  |   1.311553   .5514751     2.38   0.017     .2306818    2.392425 

          3  |    .747291   1.095394     0.68   0.495    -1.399643    2.894225 

          4  |   2.632142    1.20385     2.19   0.029     .2726404    4.991644 

       _cons |   -4.48001   .5241869    -8.55   0.000    -5.507397   -3.452622 

------------------------------------------------------------------------------ 

 

The sandwich variance estimator, or robust estimator, is applied to the model. It is a post hoc 

method where the standard errors are adjusted after estimation. One more iteration is given with 

the adjusted variance producing new standard errors.  
 

. glm death anterior i.killip , fam(bin) nolog nohead vce(robust) 

 

------------------------------------------------------------------------------ 

             |               Robust 

       death |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   .9805594    .559947     1.75   0.080    -.1169166    2.078035 

             | 

      killip | 

          2  |   1.311553   .5416441     2.42   0.015     .2499502    2.373156 

          3  |    .747291   1.134506     0.66   0.510    -1.476301    2.970883 

          4  |   2.632142   1.120983     2.35   0.019      .435056    4.829229 

       _cons |   -4.48001   .5551493    -8.07   0.000    -5.568082   -3.391937 

------------------------------------------------------------------------------ 

 

There is some difference in the standard errors, but not much.  Killip levels 3 and 4 differ the 

most.  In any case, it appears that the data may have extra dispersion in the data over what is 

expected based on the assumptions of the Bernoulli distribution. But we're not certain.  

    I now will convert the data to a grouped format, which should allow us to determine if the data 

and model is overdispersed. First, create a variable (cases) that will contain a count of the 

number of observations having the same covariate pattern for each of the 8 patterns. This is the 

binomial denominator. death is changed to be the number of deaths occurring for each covariate 

pattern. For example, the first line tells us that there were 291 observations in the 500 

observation data set above that have a 0 for anterior and 1 for killip. Of those 291 covariate 

patterns, only 3 patients died.  
 
. gen byte cases=1 

. collapse (sum)  cases (sum) death, by(anterior killip) 

. l, nolab clean 

 

       anterior   killip   cases   death   

  1.          0        1     219       3   

  2.          0        2      46       1   

  3.          0        3      12       1   

  4.          0        4       3       0   

  5.          1        1     155       4   

  6.          1        2      51       6   

  7.          1        3      12       0   

  8.          1        4       2       1   
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I now model the grouped data, checking if there are any differences in coefficients.  
 
. glm death anterior i.killip , fam(bin cases) nolog  

 

Generalized linear models                          No. of obs      =         8 

Optimization     : ML                              Residual df     =         3 

                                                   Scale parameter =         1 

Deviance         =  4.705019956                    (1/df) Deviance =   1.56834 

Pearson          =  4.290418562                    (1/df) Pearson  =   1.43014 <= 

 

Variance function: V(u) = u*(1-u/cases)            [Binomial] 

Link function    : g(u) = ln(u/(cases-u))          [Logit] 

 

                                                   AIC             =  3.716753 

Log likelihood   = -9.867013003                    BIC             = -1.533305 

------------------------------------------------------------------------------ 

             |                 OIM 

       death |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   .9805593   .5557307     1.76   0.078    -.1086529    2.069772 

             | 

      killip | 

          2  |   1.311553   .5514751     2.38   0.017     .2306817    2.392424 

          3  |   .7472907   1.095395     0.68   0.495    -1.399643    2.894225 

          4  |   2.632142    1.20385     2.19   0.029     .2726404    4.991644 

             | 

       _cons |   -4.48001   .5241869    -8.55   0.000    -5.507397   -3.452622 

------------------------------------------------------------------------------ 

 

The coefficients and standard errors of the observation and grouped models are the same, which 

tells us that there is no difference in information we have between the two models.  The data is 

the same, just expressed in a different manner. Look at the Pearson dispersion statistics though. 

At 1.43 this indicates a rather high amount of overdispersion in the data. The robust estimator on 

this data will differ from the observation-based model since model size is included in the formula 

for calculating it.  
 
. glm death anterior i.killip , fam(bin cases) nolog nohead vce(robust) 
 
------------------------------------------------------------------------------ 

             |               Robust 

       death |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   .9805593   .3285661     2.98   0.003     .3365816    1.624537 

             | 

      killip | 

          2  |   1.311553   .2411769     5.44   0.000     .8388551    1.784251 

          3  |   .7472907   1.155795     0.65   0.518    -1.518026    3.012607 

          4  |   2.632142   .8119378     3.24   0.001     1.040774    4.223511 

             | 

       _cons |   -4.48001   .2554531   -17.54   0.000    -4.980689   -3.979331 

------------------------------------------------------------------------------ 

 

The standard errors do differ. anterior was not significant using model based standard errors, but 

is using robust standard errors. Only killip level 2 is not significant.  
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     The data in the grouped model shows moderate to high overdispersion. So, if we say that the 

grouped model can be extra-dispersed, or overdispersed in this case, but the ungrouped model 

cannot be overdispersed, it makes little sense. The exact same information is being modeled.  

     One cannot take the Pearson or deviance statistics as a measure of overdispersion for the 

observation-based model, as one can for the grouped model. However, given that the same 

information is inherent in both the observation and grouped formats, if the grouped data is 

overdispersed, the observation is as well. I called this implicit overdispersion (Hilbe, 2011). It is 

not overdispersion in exactly the same sense as in the grouped model, but it is clear that binary 

data can be correlated, or overdispersed, and that it has identical information to its associated 

grouped format, which can be overdispersed.  

     Two points can be made. For some authors a binary response model, as such, requires that 

data be independent. If there is correlation or excess variability in the data, the model is NOT a 

true binary model; it is a quasi-likelihood model.  This is a basis of the restriction for claiming 

that Bernoulli models cannot be overdispersed The second point is that it can be shown that a 

binary model contains the exact same information as its corresponding grouped model. To say 

therefore that one model is overdispersed and the other cannot is not consistent.  

     I think many analysts read that binary models cannot be overdispersed and just do not 

question It. This happened with the deviance dispersion being the appropriate statistic to measure 

count model extra-dispersion. Some analysts simply took this on faith, so to speak. But they were 

mistaken. I proved using simulation that the Pearson Chi2-based dispersion is the appropriate 

measure.  R's glm command provides the deviance and residual DOF for calculating a dispersion 

statistic, as if the deviance-based dispersion were the correct measure, The  quasipoisson 

model is supposed to be used for overdispersed count data though. But the quasipoisson is a 

Poisson model with standard errors scaled by the Pearson Chi2 based dispersion, which is as it 

should be. Scaling is done my multiplying the model standard error by the square root of the 

dispersion. Why does R not provide the Pearson Chi2 and a dispersion statistic? Perhaps they  

never noticed the conflict.  

   On the same topic, R's quasibinomial model is also a regular observation-based logistic model 

where the standard errors have been scaled by the Pearson dispersion statistic. One uses this 

model when there is evidence of excess variability caused by clustering effects. This extra 

variability is dispersion, and is adjusted by the dispersion statistic.  

    I hope that my position is clear.  In Hilbe (209) I use the term "implicitly overdispersed" for 

binary logit models which, when converted to grouped format, were proven to be overdispersed.  

The thing is, with the binary model you can't immediately tell that it is extra-dispersed using the 

Pearson or deviance dispersion statistics. Most of the times you know if the data is in panel 

format, or appears to be clustered. It is at times clear that a model has more variability than 

allowed by the Bernoulli distributional assumptions. Technically such a model is not a Bernoulli 

model, but rather a Bernoulli quasi-likelihood model, or a quasi-binomial model. If we define the 

models that way, then a binary logit model cannot be overdispersed, but a quasi-binomial, or 

better, quasi-logit model can be.  I have therefore used the concept implicit overdispersion, but it 

is still overdispersion in the sense of having more variability in the model than is.  
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Consider an example model consisting 10 observations, a response variable and two predictors, 

x1 and x2. The data appears as: 

 
 

      ---------------------------- 

                         covariate            

              y   x1  x2  pattern 

       --------------------------- 

       1:     1   1   0      1 

       2:     1   1   1      2 

       3:     0   1   0      1 

       4:     1   0   0      3 

       5:     0   0   1      4 

       6:     1   1   0      1 

       7:     1   0   1      4 

       8:     0   0   0      3 

       9:     0   1   0      1 

      10:     1   1   0      1 

      ---------------------------- 

 

I combine the covariate patterns to more easily see their relationships.  

 
     ---------------------------- 

                        covariate 

              y  x1  x2  pattern 

     ---------------------------- 

       1:     1   1   0     1 

       3:     0   1   0     1 

       6:     1   1   0     1 

       9:     0   1   0     1 

      10:     1   1   0     1 

       2:     1   1   1     2 

       4:     1   0   0     3 

       8:     0   0   0     3 
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       5:     0   0   1     4 

       7:     1   0   1     4 

     ---------------------------- 

 

x1 and x2 must have the same values for each observation in a covariate pattern. Therefore the 

first five cases directly above share the same pattern of 1-0. The value of y indicates the count of 

successes for a given covariate pattern.  Restructuring the above gives: 

 
                   -------------------    

                   y   cases   x1   x2 

                   ------------------- 

                   3      5     1    0 

                   1      1     1    1 

                   1      2     0    0 

                   1      2     0    1 

                   ------------------- 

 

 


